anonymous substantiation of information stored in clouds using token verification algorithm

N.Priyadharshini,N.kavitha

Published in International Journal of Advanced Research in Computer Science Engineering and Information Technology

ISSN: 2321-3337          Impact Factor:1.521         Volume:4         Issue:3         Year: 22 May,2015         Pages:401-403

International Journal of Advanced Research in Computer Science Engineering and Information Technology

Abstract

We propose a new anonymous substantiation scheme for secure data storage in clouds. In the proposed scheme, the cloud verifies the authenticity of the series without knowing the user’s identity before storing data. Our scheme also has the added feature of access control in which only valid users are able to decrypt the stored information. The scheme prevents replay attacks and supports creation, modification, and reading data stored in the cloud. We also address user revocation.

Kewords

component; formatting; style; styling; insert

Reference

[1]S. Ruj, M. Stojmenovic, and A. Nayak, “Privacy Preserving Access Control with Authentication for Securing Data in Clouds,” Proc.IEEE/ACM Int’l Symp. Cluster, Cloud and Grid Computing, pp. 556-563, 2012. [2] C. Wang, Q. Wang, K. Ren, N. Cao, and W. Lou, “Toward Secure and Dependable Storage Services in Cloud Computing,” IEEE Trans. Services Computing, vol. 5, no. 2, pp. 220-232, Apr.- June 2012. [3] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou, “Fuzzy Keyword Search Over Encrypted Data in Cloud Computing,” Proc. IEEE INFOCOM, pp. 441-445, 2010. [4] S. Kamara and K. Lauter, “Cryptographic Cloud Storage,” Proc. 14th Int’l Conf. Financial Cryptography and Data Security, pp. 136- 149, 2010. [5] H. Li, Y. Dai, L. Tian, and H. Yang, “Identity-Based Authentication for Cloud Computing,” Proc. First Int’l Conf. Cloud Computing (CloudCom), pp. 157-166, 2009. [6] C. Gentry, “A Fully Homomorphic Encryption Scheme,” PhD dissertation, Stanford Univ., http://www.crypto.stanford.edu/ craig, 2009. [7] A.-R. Sadeghi, T. Schneider, and M. Winandy, “Token-Based Cloud Computing,” Proc. Third Int’l Conf. Trust and Trustworthy Computing (TRUST), pp. 417-429, 2010. [8] R.K.L. Ko, P. Jagadpramana, M. Mowbray, S. Pearson, M. Kirchberg, Q. Liang, and B.S. Lee, “Trustcloud: A Framework for Accountability and Trust in Cloud Computing,” HP Technical Report HPL-2011-38, http://www.hpl.hp.com/techreports/ 2011/HPL-2011-38.html, 2013. [9] R. Lu, X. Lin, X. Liang, and X. Shen, “Secure Provenance: The Essential of Bread and Butter of Data Forensics in Cloud Computing,” Proc. Fifth ACM Symp. Information, Computer and Comm. Security (ASIACCS), pp. 282-292, 2010. [10] D.F. Ferraiolo and D.R. Kuhn, “Role-Based Access Controls,” Proc. 15th Nat’l Computer Security Conf., 1992. [11] D.R. Kuhn, E.J. Coyne, and T.R. Weil, “Adding Attributes to Role- Based Access Control,” IEEE Computer, vol. 43, no. 6, pp. 79-81, June 2010. [12] M. Li, S. Yu, K. Ren, and W. Lou, “Securing Personal Health Records in Cloud Computing: Patient-Centric and Fine-Grained Data Access Control in Multi-Owner Settings,” Proc. Sixth Int’l ICST Conf. Security and Privacy in Comm. Networks (SecureComm).