Published in International Journal of Advanced Research in Electronics, Communication & Instrumentation Engineering and Development
ISSN: 2347 -7210 Impact Factor:1.9 Volume:1 Issue:3 Year: 08 March,2014 Pages:109-117
In order to solve the medical assurance problem of remote-area patients, this paper studies the telemedicine consultation system and proposes a model with three subsystems which are separately front-end embedded diagnostic system, patients’ data information server and hospital monitoring terminal. It emphasizes the software and hardware realization of embedded diagnostic system, analyzes the collection process of temperature, heart rate and blood pressure under the coordination of the ARM system, GPRS module, GPS module and vital signs information collection module. The patient’s position system is also analyzed which is aimed at real-time monitoring of vital signs and remote assistant diagnosis and treatment
SYSTEM ANALYSIS hospitals
[1] J.sauvola, M.pietikainen, page segmentation and classification using fast feature extraction and connectivity analysis, international conference on document analysis and recognition, ICDAR ’95, Montreal, Canada, 1995,pp 1127-1131 [2] B.Gatos, K. Ntirogiannis, and I.Pratikakis, ‘ICDAR 2009 docunent image binarization contest(DIBCO 2009).’in proc .Int.Conf.Document Anal.Recogniy.,Jul.2009,pp. 1375-1382. [3] I.Pratikakis, B.Gatos, and K.Ntirogiannis, “ICDAR 2011 document image binarizationcontest (DIBCO 2011),’ in proc,Int,Conf.Document Anal.Recognit., sep.2011,pp, 1506-1510 [4] S.Lu,B.Su, and C.L. Tan, “Document Image binarization using background estimation and stroke edge,’Int.J.Document Anal. Recognit vol. 14, no. 4,pp. 303-314, Dec. 2010 [5] B.Su, S.Lu, and C.L.Tan, “Binarization of historical handwritten document images using local maximum and minimum filter,’ in proc.Int.Workshop Document Anal.Syst.,Jun.2010, pp. 159-166 [6] G.Leedham, C.Ya, K.Taru, J.Hadi,N.Tan, and L.Mian, “comparison of some thresholding algorithm for text/background segmentation in difficult document images,” in proc. Int. Conf.Document Anal.Recognit., vol. 13.2003, pp. 859-864. [7] M.Sezgin and B.Sankur, “survey over image thresholding techniques and quantitative performance evaluation,” J.Electron.Imag.,vol13,no. 1,pp, 146-165, Jan. 2004. [8] O.D. Trier and A.K. Jain, “Goal-directed evalution of binarization methods,”IEEE Trans.pattern Anal.Mach.Intell., vol. 17, no. 12, pp. 1191-1201, Dec. 1995. [9] O.D. Trier and T. Taxt, “Evaluation of binarizaton methods for document images,” IEEE Trans.Pattern Anal.Mach.Intelll., vol 17, no 3,pp. 312-315,Mar.1995. [10] J.Sauvol and M.Pitikaien,’Adaptive document image binarization,’Pattern Recognit., vol.33, no. 2,pp. 225-236,2000. [11] W.Niblack, An Introducion to Digital Image Proessing, Englewood Cliffs,NJ: Prentice Hall, 1986 [12] J.Bersen, ‘Dynamic thresholding of gray-level images,’ in Proc, Int.Conf.Pattern Recogniy., aoct 1986, pp.1251-1255 [13] M.van Herk, “A fast algorithm for local minimum and maximum filters on rectangular and octagonal kernels,” Pattern Recognit. Lett., vol.13, no. 7,pp.517-521, Jul.1992