Published in International Journal of Advanced Research in Mathematics and Applications
ISSN: 2350-028X Impact Factor:1.2 Volume:1 Issue:1 Year: 25 October,2014 Pages:74-79
In this paper the Decomposable Operators on Banach Spaces characterize a single-valued extension property with analytic function by using of Rouche theorem and Dunford’s theorem.
Single valued extension property, quasi-nilpotent ,spectral maximal space.
Reference (1) C. Foias, Spectral maximal spaces and decomposable operators in Banach spaces, Arch. Math. (Basal),vol.14 (1963). (2) I. Erdelyi and S. Wang, A local spectral theory for closed operators, London Math. Soc. Lectures Notes Series. (3) M.Radjabalipour, Equivalence of decomposable and 2-decomposable operators, pacific j.math. vol77 (1978). (4) E. Albrecht, on decomposable operators, Integral Equations and operator theory, vol. 2 (1979). (5) N. Dun ford and J. Schwartz, Linear operators and Spectral theory, I,II, New York (1958,1963). (6) T. Kato. Perturbation theory for linear operators, Springer (1966). (7) B.Nagy, Operators with the spectral decomposition property are decomposable, Studia Sci.Math. Hunger. vol.13 (1978). (8) C. Foias, Spectral capacities and decomposable operators Rev. Roumaine Math. Pures Appl., 13 (1968), pp. 1539–1545 (9) G.W Shulberg , Spectral resolvents and decomposable operators Operator Theory and Functional Analysis, Research Notes in Mathematics,No. 38, Pitman, San Francisco (1979). (10) N Dunford, J.T Schwartz Linear Operators, Wiley, New York (1967) Part I (11) C Foiaş, The Riesz-Dunford functional calculus with decomposable operators Rev. Roumaine Math. Pures Appl., 12 (1967), (12) M.Radjbalipour, On Subnormal operator, Trans.Amer.Math Soc 211(1975). (13) Wang Shenwang, Characterization of Closed Decomposable Operator Illinois J Math.28 (1984). (14) A. Brown and A. Page, Elements of functional analysis, van.Nostrand (1970). (15) Kjeld B. Laursen, Michael M. Neumann, An Introduction to Local Spectral Theory, Oxford Univ. press. (16) H. Dowson, Spectral theory of linear operators Academic press (1978). (17) Xia D. Spectral theory of hypo normal operators. Basel: Birkhauser Verlag, (1983). (18) P.R. Halmos. A Hilbert space problem book. Van Nostrand. Princeton (1967). (19) A Lambert, Strictly cyclic operators algebra, Ph.D. Thesis, University of Michigan (1970). (20) G.B.conway, A course in functional analysis, Springer Verlag, New York (1985