Published in International Journal of Advanced Research in Mathematics and Applications
ISSN: 2350-028X Impact Factor:1.2 Volume:1 Issue:1 Year: 08 January,2014 Pages:63-73
In this paper, we establish an interesting q-identity and an integral representation of a q-continued fraction of Ramanujan. We also compute explicit evaluation of this continued fraction and derive its relation with Ramanujan G¨ollnitz -Gordon continued fraction. 2000 Mathematics Subject Classification: 11A55.
Continued fractions, Modular Equations.
[1] C. Adiga, B. C. Berndt, S.Bhargava and G. N. Watson, Chapter 16 of Ramanujan’s Second Notebook: Theta-Functions and q-Series, Mem. Amer. Math. Soc., No. 315, 53(1985), 1-85, Amer. Math. Soc., Providence, 1985. [2] C. Adiga, T. Kim, M. S. Mahadeva Naika and H. S. Madhusudhan, On Ra-manujan’s Cubic Continued Fraction and Explicit Evaluations of Theta Func-tions,Indian J. Pure and App. Math., No. 55, 9(2004), 1047-1062. [3] G. E. Andrews, An introduction to Ramanujan’s ‘lost’ notebook, Amer. Math. Monthly, 86(1979), 89-108. 11 [4] G. E. Andrews, The Lost Notebook Part I, Springer Verlang, New York, 2005. [5] B. C. Berndt, Ramanujan’s Notebooks, Part III, Springer-Verlag, New York, 1991. [6] B. C. Berndt, Ramanujan’s Notebooks, Part V, Springer-Verlag, New York, 1998. [7] J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, New York, 1987. [8] H.H. Chan, On Ramanujan’s Cubic Continued Fraction, Acta Arith. 73(1995), 343-355. [9] H.H. Chan and S.S. Huang, On the Ramanujan G¨ollnitz Gordon Continued Fraction, Ramanujan J., 1(1997), 75-90. [10] S. Ramanujan, Notebooks, 2 volumes, Tata Institute of Fundamental Research, Bombay, 1957. [11] S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa, New Delhi, 1988. [12] K.R. Vasuki and B.R. Srivatsa Kumar, Certain identities for the Ramanujan Gollnitz Gordon Continued fraction, J. of Comp. and Applied Mathematics. 187(2006),87-95.