an analysis on cloud monitoring

N.Preethi,A.Manimaran,A.Subbiah

Published in International Journal of Advanced Research in Computer Science Engineering and Information Technology

ISSN: 2321-3337          Impact Factor:1.521         Volume:6         Issue:3         Year: 24 October,2017         Pages:1377-1386

International Journal of Advanced Research in Computer Science Engineering and Information Technology

Abstract

Cloud Computing provides customers the illusions of infinite computing resources which are available from anywhere, anytime, on-demand. Computing at such an immense scale requires a framework that can support to the large datasets. Cloud Computing has been created for conveying data innovation administrations also for individuals clients. Cloud Computing is widely used to deliver services over the internet for both technical and economical reasons. Increased the complexity of the infrastructures behind these services. To properly operate and manage such complex infrastructures effective and efficient monitoring is constantly needed. The properties of cloud and its features, technologies (eg. Virtualization). And then analysing motivations for cloud monitoring, providing also definitions and background for the following contributions. In this paper we provide a survey on cloud monitoring.

Kewords

Cloud monitoring, Cloud monitoring platforms.

Reference

1) R. Ahlswede, N. Cai, S.-Y.R. Li, and R.W. Yeung. Network information flow . IEEE Trans. Information flow . IEEE Trans . information Theory, IT-46 (4): 1204-1216. 2)S.-Y . R . Li, R.w. Yenung, and N. Cai . Linear network coding. IEEE Trans . Information Theory, IT-49 (2):371-381. 3)J. Cao, B- Carmination, E. Ferrari, and K- L . Tan . Castle: A delay - constrained scheme for KS- anonymizing data streams. In proceeding of the 24th International Conference On Data Engineering(ICDE’08) pages 1376-1378. IEEE 2008. 4)M . Datar, A.Gionis, P .Indyk, and R. Motwani . Maintaining Stream Statistics Over Sliding Windows(extended abstract). Citeseer. nj. Nec . com/491746.html. 5)B.C.M. Fung, K . Wang , A.W. C.Fu, and J.pei. Anonymity for continuous data publishing. In proceedings of the 11th International Conference On Extendig Database Technology (EDBT’08) , Nantos, France , March 2008 . ACM press. 6)Y. Cassuto and J. Bruck , “Cyclic Lowest Density MDS Array Codes” IEEE Transactions on Information Theory, Vol.55 , no .4, pp.1721-1729 April 2009. 7)C. GKtansidis and P. Rodriguez, “Cooperative Security for Network Coding File Distribution”, in proc.of the 25th Conference of the IEEE Communication Society (INFOCOM) Barcelona, Spain,April 23-29 ,2006, pp 1-13. 8)C.Percival, “Matching with Mismatches and Assorted Application”,ph.D. dissertation, Wadham College, University of oxford. 9)C. Huang, M. Chen, and J. LI, “Pyramid Codes : Flexible Schemes to trade space for Acess Efficiency in Reliable Data Storage System,” in proc. of the 6th IEEE International Symposium on network Computing and Application , Cambridge, MA, July 12-14 2007 pp.79.86. 10)A.G. Diamakis and K. Ramachandran, “A Survey of network codes for Distributed Storage” , proceedings of the IEEE, Vol . 99, no.3, pp.476-489 , March 2011. 11)D. Ford et al.. “Availability in globally distributed storage system”. In proc. 9th USENIX symp. Oper. Syst. Design Implement. (OSDI), Vancouver, BC, Canada, Oct. 2010, pp. 1-14. 12)H. Weatherspoon and J.D. Kubiatowicz, “Erasure coding vs. replication: A quantitative comparison,” in proc. 1st Int. Workshop peer-to-peer Syst. (IPTPS), Cambridge, MA, USA, Mar. 2002, pp.328-338. 13)T. Ho, R. Koetter, M. Medrad. D.R. Karger, and M. Effors, “Network information flow”, IEEE Trans. Inf, Theory, vol. 46 , no. 4, pp. 1204-1216, jul. 2000. 14)C. Gkantsidis and P.R. Rodriguez, “Network coding for large scale content distribution,” in proc. 24th Conf. IEEE Commun. Soc, (INFOCOM/0, VOL. 4. Miami, FL, USA, Mar. 2005. Pp. 2235-2245. 15)Z. Liu, C. Wu, B. Li, and S. Zhao “UUSee: Large-scale operational on-demand streaming with random network coding,” in Proc .29th conf. IEEE Commu. Soc. (INFOCOM), San Diego, CA, USA, Mar. 2010, pp. 1-9. 16)A.G. Dimakis, P.B. Godfrey, Y. Wu, M. O. Wainwright, and K. Ramachandran, “Network coding for distributed storage system,” IEEE Trans. Inf. Theory, vol. 56, no. 9, pp. 4539-4551. Sep. 2010. 17)M. Zakerinasab and M. Wang, “An update model for network coding in cloud storage system”, in proc. 50th Annu. Alterton Conf. Commun, Control Comput.(Allerton). Monticello, IL. USA, Oct. 2012, pp. 1158-1165. 18)J. W. Hunt and M. D. Mcllroy, “An algorithm for differential file comparison,” Dept. Comput. Sci., Bell Lab., Tech. Rep. 41, jun. 1976. 19)B. Fan, W. Tantisiriroj, L. Xiao, and G. Gibson, “Disk Reduce: Replication as a prelude to erasure coding in data-intensive scalable computing ,” Parallel Data Lab., Carnegie Mellon Univ., Pittsburgh. PA, USA, Tech. Rep. CMU-PDL-11-112 Oct. 2011. 20)M. K. Aguilera, R. Janakiraman and L. Xu, “Using erasure codes efficiently for storage in a distributed system” in Proc. IEEE Int. Conf. Depend. Syst. Netw. (DSN), Yokohama, Japan, Jun/Jul. 2005, pp.336-345. 21)D. S. Lun et al., “Achieving minimum-cost multicast: A decentralized approach based on network coding,” in proc . 24th Conf. IEEE Commun. Soc, (INFOCOM). Vol, 3. Miami, FL, USA, Mar,2005.pp.1607-1617. 22)Y. Lu, J. Hao, X.-J. Liu, and S.-T. Xia, “Network coding for data-retrieving in cloud storage system ,” in proc. Int. Symp. Netw. Coding (NetCod), Sydney, NSW, Australia, 2015, pp.51-55. 23)P. Sander, S. Egner, and L. Tolhuizen. Polynomial time algorithm for network information flow. In Symposium on Parallel Algorithms and Architectures(SPAA),pages 286-294, San Diego, CA, June 2003. ACM. 24)T. Ho, D. R. Karger, M. Medard, and R. Koetter. Network coding from a network flow perspective. In Proc. Int’l Symp. Information Theory, Yokohama, Japan, June 2003. IEEE. 25)T. Ho, R. Koetter, M. Medare, D. R. Karger, and M. Effros. The benefits of coding over routing in a randomized setting. In proc. Int’l Symp. Information Theory, Yokohama, Japan,June 2003. IEEE. 26)A. Albanese, J. Blomer, J. Edmonds, M. Luby, and M. Sudan. Priority encoding transmission. IEEE Trans. Information Theory, 42:1737-1744. 27)A. V. Goldberg and R. E. Tarjan. A new approach to the maximum flow problem. Journal of the ACM, 35(4):921-940. 28)Y. Wu, P. A. Chou, and K. Jain. Practical network coding. Technical report, Microsoft Research. 29)Eric A. Brewer, “Towards Robust Distributed Systems.” In principles of Distributed Computing, Portland, Oregon ,2000. 30)F. Chang et al., “Bigtable: A Distributed Storage System for Structured Data,” in OSDI, 2006. 31)Albert Greenberg et al., “VL2: A Scalable and Flexible Data Center Network,” Communication if the ACM, vol. 6, no.2, pp. 213-226. 32)R. Renesse and F. Schneider, “Chain Replication for Supporting High Throughput and Availability,” in USENIX-OSDI. 33)B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in data stream systems. In Proceedings of the 21st ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS’02), Madison, WI. 34)B. Babcock, M. Datar , and R. Motwani. Sampling from a moving window over streaming data. In Proceedings of the 13th annual ACM-SIAM symposium on Discrete algorithms(SODA’02), pages 633-634. 35)R. J. Bayardo and R. Agrawal. Data privacy through optimal k-anonymization. In Proceedings of the 21st International Conference on Data Engineering(ICDE’05),pages 217-228. 36)M. Datar , A. Gionis, P. Indyk, and R. Motwani. Maintaining stream statistics over sliding windows. 37)G. Ghinita, P. Karras, P. Kalnis, and N. Mamoulis. Fast data anonymization with low information loss.In Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD’84), pages 47-57. 38)A. Guttman. R-trees: A dynamic index structure for spatial indexing: toward scalable and incremental anonymization. In Proceeding of the ACM SIGMOD International Conference on Management of data (SIGMOD), pages 47-57. 39)K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Incognito: Efficient full-domain k-anonymity. In Proceedings of the 24th ACM SIGMOD International Conference on Data Engineering (ICDE’06 ), Atlanta, GA, USA, IEEE. 40)J. Li, B. C. Ooi, and W. Wang. Anonymizing streaming data for privacy protection. In Proceedings of the 24th International Conference on Data Engineering (ICDE’08), pages 1367-1369.IEEE, 2008. 41)C. Ware, Information Visualization : Perception for Design Morgan Kaufmann publishers, Inc., 2004 42) G.conti, Security Data Visualization . No startch press, 2007. 43)R. Marty, Applied Security Visualization. Addision-WeleProfessional, 2008. 44)R. Erbacher, K. Walker, and D.Frincke, “Intrusion and Misuse Detection in large-scale system”, IEEE Computer Garaphics and Applications, vol.22, no.1, pp. 38-48,Jan/Feb. 2002. 45)R. Erbacher, “Itrusion Behavior Detection through Visualization,” proc. IEEE Int’ I Conf. System, man and cybernetics, pp.2507-2513, 2003. 46)T. Takada and H.Koike, “Tudumi: Information Visualization System for Monitoring and Auditing Computer Logs,” proc. Sixth Int’I conf. Information Visualization, pp. 570-576, 2002. 47)K. Lakkaraju, W. Yurcik, and A. Lee, “N Vision /p : Netflow Visualization of System State for Security Situational Awareness,,” proc ACM Workshop Visualization and Data Mining for Computer Security, vol. 29, pp. 65-72, 2004.