

Improving the Performance of TCP Using

Window Adjustment Procedure and

Bandwidth Estimation

R.Navaneethakrishnan

Assistant Professor (SG)

Bharathiyar College of Engineering and Technology, Karaikal,

India.

ABSTRACT— The Internet plays a significant role nowadays in our lives. Two main protocols

are being implemented in the transport layer of the internet, namely UDP (User Datagram

Protocol) and TCP (Transmission Control Protocol). They are distinguished by their connection

type. UDP is a connectionless protocol that suits for multimedia transmissions. TCP is a

connection - oriented protocol used to provide a reliable data transfer between two systems.

Internet traffic is TCP-based, which causes Congestion. To avoid the Congestion existing method

used Slow Start, Congestion Avoidance, and Fast Retransmit. To overcome the drawbacks Of the

existing system, we propose two methods, Window Adjustment Procedure and Bandwidth

Estimation. In window adjustment procedure the congestion window size is reduced in terms of

10%. Hence, it provides high utilization, minimum delay, maximum throughput, fairness. The

bandwidth is estimated by the rate of returning acknowledgement.

Keywords— Slow Start, Congestion Avoidance, Fast Retransmit, Window Adjustment

Procedure, Bandwidth Estimation, Congestion Control

1, INTRODUCTION

The Transmission Control Protocol (TCP) is one of the core protocols of the Internet Protocol

Suite. TCP is one of the two original components of the suite, complementing the Internet

Protocol (IP), and therefore the entire suite is commonly referred to as TCP/IP. TCP provides the

service of exchanging data directly between two network hosts, whereas IP handles addressing

and routing message across one or more networks. In particular, TCP provides reliable, ordered

delivery of a stream of bytes from a program on one computer to another program on another

computer. TCP is the protocol that major Internet applications rely on, applications such as the

World Wide Web, e-mail, and file transfer. Other applications, which do not require reliable data

stream service, may use the User Datagram Protocol (UDP) which provides a datagram service

that emphasizes reduced latency over reliability. [1] in which some problems of TCP in high

speed network environments are analyzed. Such problems are related to the standard algorithms

Slow-Start and Congestion Avoidance, which were designed when networks provided much

lower bandwidth that the current ones do. Two solutions have been described: Limited Slow-

Start and High Speed TCP. Limited Slow-Start allows the TCP sender to better estimate the

available bandwidth and to achieve the transfer with a higher value of congestion window than

for the case of standard slow-Start. The High Speed TCP modifies the standard TCP’s response

function in order to make the sender more aggressive in congestion avoidance phase for large

sizes of the congestion window. Experiments show that both for improving TCP in high speed

networks. The former because it reduces the effect of Slow-Start overshoot phenomenon and

helps to better probe the available link bandwidth during the initial Slow-Start phase. The latter

because it uses a more suitable TCP’s response function for TCP in high speed networks, which

makes the sender better reacting to congestion-related events. Limited Slow-Start and High

Speed TCP have been implemented in Network Simulator [NS]. The two algorithms have been

explored in simulations and with experiments in real environments. However, further research is

needed to better tune the algorithms parameters and to study the fairness of TCP connections

using the Limited Slow-Start and the High-Speed TCP variant against standard TCP versions.

2, EXISTING SYSTEM

2.1 Slow Start:

(Multiplicative Increase) It operates by observing that the rate at which new packets should be

injected into the network is the rate at which the acknowledgments are returned by the other end.

Slow start adds another window to the sender's TCP: the congestion window, "cwnd". When a

new connection is established with a host on another network, the congestion window is

initialized to one segment (i.e., the segment size announced by the other end, or the default,

typically 536 or 512). Each time an ACK is received, the congestion window is increased by one

segment. The sender can transmit up to the minimum of the congestion window and the

advertised window.The congestion window is flow control imposed by the sender, while the

advertised window is flow control imposed by the receiver. The former is based on the sender's

assessment of perceived network congestion; the latter is related to the amount of available

buffer space at the receiver for this connection. The sender starts by transmitting one segment

and waiting for its ACK. When that ACK is received, the congestion window is incremented

from one to two, and two segments can be sent.

Figure:1. Slow Start, Exponential

 Increase

When each of those two segments is acknowledged, the congestion window is increased to four.

This provides an exponential growth, although it is not exactly exponential because the receiver

may delay its ACKs, typically sending one ACK for every two segments that it receives.

2.2 Congestion Avoidance : (Additive Increase):

Congestion can occur when data arrives on a big pipe (a fast LAN) and gets sent out a smaller

pipe (a slower WAN). Congestion can also occur when multiple input streams arrive at a router

whose output capacity is less than the sum of the inputs. Congestion avoidance is a way to deal

with lost packets. Congestion avoidance and slow start require that two variables be maintained

for each connection: a congestion window, cwnd, and a slow start threshold size, ssthresh. The

combined algorithm operates as follows:

1. Initialization for a given connection sets cwnd to one segment and ssthresh to 65535 bytes.

The TCP output routine never sends more than the minimum of cwnd and the

receiver's advertised window.

2. When congestion occurs (indicated by a timeout or the reception of duplicate ACKs), one-

half of the current window size (the minimum of cwnd and the receiver's advertised window, but

at least two segments) is saved in ssthresh. Additionally, if the congestion is indicated by a

timeout, cwnd is set to one segment (i.e., slow start).

3. When new data is acknowledged by the other end, increase cwnd, but the way it increases

depends on whether TCP is performing slow start or congestion avoidance.[3].

Figure: 2.Congestion Avoidance, Multiplicative Increase

2.3 Fast Retransmit:

TCP may generate an immediate acknowledgment (a duplicate ACK) when an out-of-

order segment is received. This duplicate ACK should not be delayed.

The purpose of this duplicate ACK is to let the other end know that a segment was

received out of order, and to tell it what sequence number is expected. Since TCP does not know

whether a duplicate ACK is caused by a lost segment or just a reordering of segments, it waits

for a small number of duplicate ACKs to be received.

It is assumed that if there is just a reordering of the segments, there will be only one or

two duplicate ACKs before the reordered segment is processed, which will then generate a new

ACK. If three or more duplicate ACKs are received in a row, it is a strong indication that a

segment has been lost. TCP then performs a retransmission of what appears to be the missing

segment, without waiting for a retransmission timer to expire.

 Figure: 3 Fast Retransmit

3, PROPOSED SYSTEM

3.1 Window Adjustment Procedure:

In the existing system, the window adjustment procedure reduces the window size into

half, if congestion occurs during packet transmission. But in the proposed system, the window

adjustment procedure will reduce the window size in terms of 10%. The procedure generally

increases the throughput and minimizes the delay in packet transfer. Initially get the number of

users and the packet size for each user in bytes as an input. Then calculate the total packet size

for each user.

Window Adjustment Procedure: If congestion occurs the window adjustment procedure

reduces the congestion window size is in terms of 10%. This advantage over this procedure is

its high utilization. It also increases the throughput but minimizes the time delay. Initially set

the bandwidth as 8 Mbps and the window size as 72000 bytes. Convert the bandwidth value in

to bytes and compare it with the total value. The message will be sent if the total is less than the

bandwidth value. After sending the message, calculate the Round Trip Time (RTT) value for

each acknowledgement (ACK). Already we have the bandwidth as,

W.S = RTT * B.W

Where Window Size (W.S) is the product of Round Trip Time (RTT) and Bandwidth

(B.W). From that we have,

RTT = W.S / B.W

If the total value is greater than the bandwidth, apply the window adjustment procedure.

This procedure reduces the window size in terms of 10%. It continues sending until the whole is

sent. So that we have,

 10/100 * Total = Total.

3.2 System Architecture:

Figure : 4 Input Module

Fig:5 Window Adjustment Module

3.3 Bandwidth Estimation:

The bandwidth is estimated by the rate of returning acknowledgements. Measuring maximum

data throughput rate of communication and network access. The bandwidth is used to compute

congestion window and slow start threshold. Sender uses ACK reception time and the amount of

data recently delivered to the destination. [4]. TCP bandwidth estimation formula

B.W (in Mbps) = RCV buffer size(in bytes) / RTT(in ms)

Ex:(64Kbyte*8bit)/0.17=3011764bps=3Mbps.

Here,

 (RTT =170ms)

Figure :6 Bandwidth Estimation

 TABLE 1

 CALCULATION OF RTT

CAPACITY

IN

CONV

E

WINDOW

ROUND

TRIP

RT TIME IN

Mbps SIZE * 10^3

Mbps millisecond

10 10240 15 0.0018

15 15360 20 0.0024

20 20480 25 0.0031

25 25600 30 0.0036

30 30720 35 0.0043

35 35840 40 0.0048

40 40960 45 0.0054

45 46080 50 0.0061

50 51200 55 0.0067

 4, STIMULATION RESULTS

The performance in TCP is improved using Window Adjustment procedure and

Bandwidth Estimation. The Simulation results shows maximum throughput,

minimum delay, high utilization. The simulation results are run in NS2.

 Figure :7 A Simple Network Configuration for NS-2 Simulation.

5, CONCLUSION

In this paper, window adjustment procedure and bandwidth estimation in TCP

congestion control is proposed. In Window adjustment procedure, window size gets

reduced to 10% in every round trip time, when the sender’s total packet exceeds its

receiver side bandwidth. The bandwidth is estimated by the rate of returning

acknowledgements. Through the simulations, the proposed scheme is shown to have

better performance than the existing scheme.

REFERENCES

[1]. Davide Astuti “Improving TCP Performance in High Speed Networks” Research

seminar on Internet protocols.

[2] Brakmo, L. S., and Peterson, L. L., 1995, “TCP Vegas: End to End Congestion Avoidance

on a Global Internet,” IEEEJournal on Selected Areas in Communications, Vol. 13, No. 8, pp.

1465-1480.

[3]. Floyd, S., and Jacobson, V., 1993, “Random Early Detection Gateways for Congestion

avoidance”, IEEE /ACM Transactions on Networking, Vol. 1, No. 4, pp. 397-413.

[4]. Gerla, M., Sanadidi, M. Y., Wang, Ren, Zanella, A., Casetti, C., and Mascolo, S., 2001,

“TCP Westwood: congestion window control using bandwidth estimation,” IEEE GLOBECOM

’01, Vol.3, pp. 1698-1702.

[5]. Jin, Guojun “Packet Drop Avoidance for High-speed Network Transmission Protocol”,

Distributed Systems Department Lawrence Berkeley National Laboratory Berkeley, CA

94720.

[6]. Jacobson, V., 1988, “Congestion Avoidance and Control,” in Proceedings of ACM

SIGCOMM, pp.314-329, Stanford, CA, USA.

[7]. K. Satyanarayan Reddy and Lokanatha C. Reddy, “A Survey on Congestion Control

Mechanisms in High Speed Networks”, IJCSNS International Journal of Computer Science and

Network Security, VOL.8 No.1, January 2008.

BIOGRAPHY

R.Navaneethakrishnan Assistant Professor (SG) from Bharathiyar College of Engineering and

Technology, Karaikal, India

	page5
	page7
	page9

