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Abstract 
Imam Khomeini International University Imam Khomeini International University 

            The lattice Boltzmann method (LBM) is a powerful numerical tool for simulating 

fluid flows. In particular, it has demonstrated a unique capability for handling incompressible 

flows in complex geometries and multi-component flows. Much effort has been expended to 

extend the LBM to deal with compressible thermal fluids. Lattice Boltzmann (LB) modeling 

compressible flows has long been attempted by various researchers. One common weakness 

of most of previous models is the instability problem when the Mach number of the flow is 

large. In this paper we present a finite-difference LB model, which works for flows with any 

ratios of specific heats and a wide range of Mach number, from 0 to 30 or higher. To 

correctly represent compressibility in a thermal fluid, multiple particle speeds have to be 

introduced. Besides the discrete-velocity-model by Watari, a modified Lax–Wendroff finite 

difference scheme and an artificial viscosity are introduced. The combination of the finite-

difference scheme and the adding of artificial viscosity must find a balance of numerical 

stability versus accuracy. The proposed model is validated by recovering results of some 

well-known benchmark tests: shock tubes (one dimensional), supersonic bump and ramp (two 

dimensional). The two sets of results have a satisfying agreement with exact solutions. 
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1. Introduction 
In the past two decades the lattice Boltzmann (LB) method got rapid development and has been successfully applied 

in simulating many physical phenomena in various complex systems, especially in simulating incompressible fluids 

[1]. Although having long been attempted, the application of LB to high-speed compressible flows still needs 

substantial effort. The significance of the effort is manifested by the ubiquitousness of the high-speed compressible 

flows, for example, in explosion physics,[2] aeronautics, and so on. The LB method has demonstrated its ability to 

simulate single component hydrodynamics, multiphase and multi-component fluids, magneto-hydrodynamics, 

reaction-diffusion systems, flows through porous media, and other complex systems. Because of its intrinsic kinetic 

nature, the LB contains more physical connotation than Navier–Stokes or Euler equations based on the continuum 

hypothesis [3]. From the Chapman–Enskog analysis, the latter can be derived from the former under the 

hydrodynamic limit. Meanwhile, the LB method has demonstrated a significant potential and broad applicability 

with numerous computational advantages, such as the parallel of algorithm, the simplicity of programming, and the 

ability to incorporate microscopic interactions. Although promising, the current lattice Boltzmann method still has a 

few undesirable shortcomings that limit its general application as a practical computational fluid dynamics tool. One 

of these shortcomings is the low Mach number constraint. Although having achieved great success in simulating 

incompressible fluids, the application of LB to high-speed compressible flows still needs substantial effort. 

The multispeed thermal model, where several speeds of particle velocities are used, has been proposed to correctly 

represent heat characteristics and compressibility [4,5]. Ref. [6] has proposed solving the LBM using the finite 

difference scheme (FDLBM). The FDLBM has three advantages over the LBM. First, the FDLBM can secure the 

numerical stability by selecting an appropriate time increment. Secondly, it affords a generalized coordinate system 

ISRJournals and Publications Page 196



International Journal of Advanced Research in Mechanical and Production Engineering and Development

Volume: 1 Issue: 3 Jul,2016,ISSN_NO: 2320-7256

 

that fits with the shape of the boundary. Thirdly, in the LBM, particle velocities are restricted to those that exactly 

link the lattice nodes in unit time. On the other hand, in the FDLBM as we do not need to consider that constraint, 

we can select particle velocities independently from the lattice configuration, which enables us to construct a model 

stable across a wide speed range. Simulation of the compressible Navier–Stokes system, especially for those 

containing shock waves or contact discontinuities, is an interesting and challenging work. Along the line, extensive 

efforts have been made in the past years. Yan, et al. [7] proposed a compressible LB model with three-speed-three-

energy-level for the Euler system. Yu and Zhao [8] composed a model which introduces an attractive force to soften 

sound speed. Sun[9−11] contributed a locally adaptive semi-discrete LB model where the set of particle speed is 

chosen according to the local fluid velocity and internal energy so that the fluid velocity is no longer limited by the 

particle speed set. All above-mentioned works are referred to as the standard LB scheme where the discrete 

velocities are constrained by the specific discretizations of space and time. In the development of LB models, 

another way is referred to as the finite difference lattice Boltzmann (FDLB)[12−14]. FDLBM has three advantages 

over the LBM. First, the FDLBM can secure the numerical stability by selecting an appropriate time increment. 

Secondly, it affords a generalized coordinate system that fits with the shape of the boundary. Thirdly, in the LBM, 

particle velocities are restricted to those that exactly link the lattice nodes in unit time. On the other hand, in the 

FDLBM as we do not need to consider that constraint, we can select particle velocities independently from the 

lattice configuration, which enables us to construct a model stable across a wide speed range. 

The one by Watari–Tsutahara (WT) is typical [15]. The same idea was then extended to binary compressible flows 

[16]. FDLBM breaks the binding of discretizations of space and time and makes the particle speeds more flexible. 

But similar to previous LB models, the numerical stability problem remains one of the few blocks for its practical 

simulation to high Mach number flows. The stability problem of LB has been addressed and attempted for some 

years [17–27]. Among them, the entropic LB method [20,21] tries to make the scheme to follow the H-theorem; The 

FIX-UP method [20,22] is based on the standard BGK scheme, uses a third-order equilibrium distribution function 

and a self-adapting updating parameter to avoid negativeness of the mass distribution function. Flux limiter 

techniques are used to enhance the stability of FDLB by Sofonea, et al. [23]. Adding minimal dissipation locally to 

improve the stability is also suggested by Brownlee, et al. [24], but there such an approach is not explicitly 

discussed. All the above-mentioned attempts are for low Mach number flows. 

This paper is planned in the following way. Section 2 briefly reviews the discrete-velocity model by Watari. The 

modified Lax–Wendroff scheme combined with an artificial viscosity is introduced in Sec. 3. Benchmark tests 

are used to validate the new model in Sec. 4. Section 5 summarizes and concludes the present paper. 

 

2. Finite difference lattice Boltzmann method with Flexible Specific Heat Ratio 
In this paper we approach the non-isothermal gas flow using the general description of finite-difference lattice 

Boltzmann (FDLB) thermal model with multiple speeds of Watari and Tsutahara [15], which allows the correct 

recovery of mass, momentum and energy equations of a compressible fluid.  

The evolution of the distribution function f��with the Bhatanger–Gross–Krook approximation [24] reads, 

 ������ + 
��
 ������
 = −1
� ���� − ���(�)� (1) 

 

Where r is the spatial coordinate, τ	 is single relaxation time and variable t is time.  f��(�) is the discrete version of the 

local equilibrium distribution function, Subscript k indicates the k-th group of the particle velocities whose speed is c�, and i indicates the direction of particle’s speed. 

The local density ρ, the hydrodynamic velocity u!, and the translational internal energy e are determined from these 

distribution functions, as follows: 
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Where D is the space dimension, and n is the number of extra degrees of freedom whose energy level is 
012* . By 

applying the Chapman-Enskog expansion, to be equivalent to the following fluid equations, the Navier-Stokes 

equations: 
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Where the pressure P, viscosity coefficient μ and heat conductivity κ? have the following relations: 

6 = 2
' #) 

: = 2
' #)	� 

>? = 2(' + ( + 2)
'(' + () 	#)	� 

(6) 

E is defined as, sum of the translational energy and the extra energy, 

 

= = 	' + (
' )				 

(7) 

The specific heat ratio	γ, the temperature T, and the sound speed a are expressed as 

 

F = 2
' ) 

G = ' + ( + 2
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(8) 

The equilibrium distribution function f��JK is derived as the polynomial form of flow velocity from the Maxwellian 

distribution: 
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For recover the Full Navier–Stokes equations, the equilibrium distribution function must be retaining up to fourth 

order terms of flow velocity: 
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Where the parameter F� and is a function of	e and c�	. F� is calculated in the following way: 

 

ISRJournals and Publications Page 198



International Journal of Advanced Research in Mechanical and Production Engineering and Development

Volume: 1 Issue: 3 Jul,2016,ISSN_NO: 2320-7256

 

V� = 1 − 8(Va + V* + V\ + VW + Vb + Vc + Vd + Ve) 
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Nine groups of particle velocities are selected as follows: (
a, 
*, 
\, 
W, 
b, 
c, 
d, 
e) = (1,2,3,4,1,2,3,4) (-a, -*, -\, -W, -b, -c, -d, -e) = (1,2,3,4,0,0,0,0) 
 

(12) 

Table 1 Particle velocities of the 2-D Navier Stokes model -� 
� � ∶ 	i��)
��j( � ∶ 	k�j%P 

0  0  1  0  

-a 
a 1~8 1  

-* 
* 1~8 2  

-\ 
\ 1~8 3  

-W 
W 1~8 4  

0  
b = 
a 1~8 5  

0  
c = 
* 1~8 6  

0  
d = 
\ 1~8 7  

0  
e = 
W 1~8 8  
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All variables and parameters used in this paper are non-dimensionalized according to the table 1. 

 

Table 1 :non-dimensional form of Macroscopic and Microscopic variables 

Parameter type Parameter name Reference Term 

Density #, ��� , ���LM  #� 

Velocity 
��
 , %
 , ImF� 

Energy ), = mF� 

Temperature F F� 

Coordinate �
  n 

Time �, � 
n

ImF�
 

Pressure 6 #�mF� 

Diffusion :	, >? #�nImF� 

 
In table 1, #�, L and F� are Reference variables and R is gas constant. 

 

 

3. Modified Lax–Wendroff Scheme and Artificial Viscosity 
The combination of the above DVM and the general FD scheme with first-order explicit scheme to time and the 

second-order upwinding to space composes the original FDLB model by Watari. It has been verified by the sound 

speed simulation, Couette flow simulation and normal shock simulation, which agreed well with theoretical results. 

When the Mach number M exceeds 2.5 around, the original LB model is not stable. Due to the DVM is derived 

independent of the Mach number. Therefore, we resort to the discretization of the left-hand side of Eq. (1) to make 

an accurate and stable LB scheme. Here we investigate a mixed scheme which is composed of a modified Lax–

Wendroff and an artificial viscosity. 

As we know, the original Lax–Wendroff (LW) scheme is very dissipative and has a strong “smoothing effect”. 

Obviously, it is not favorable when needing capture shocks in the system. To compromise the accuracy and stability, 

we add a dispersion term and the artificial viscosity to the right-hand side of Eq. (1) before discretization so that we 

have: ������ + 
��
 ������
 = −1
� 5��� − ���(�)8 

																																		+ 
��
(1 − q��
*)∆�
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�\���
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where 

	q��
 = 
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plays a role of the switching function, v is a coefficient controlling the amplitude of the artificial viscosity. Using the 

Lax–Wendroff to the left-hand side and central difference to the right-hand side of Eq. (13) results in the following 

LB equation, 

���tzL{ = ���t − q��
2 (���txa − ���tya) − Δ�
� 5���t − ���tLM8 

																																+ q��
*
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																																+ q��
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12 (���tx* − 2���txa + 2���tya − ���ty*)

+ s
t|�
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|)2 (���txa − 2���t + ���tya) 

(15) 

 

where the third suffixes I − 1, I, I + 1 indicate the mesh nodes in x- or y-direction. It is clear that the first line 

corresponds to the general LB equation with the central difference in space; compared with the central difference, 

the Lax–Wendroff contributes an extra line II; lines III and IV show the added dispersion term and artificial 

viscosity. 

 

4. Numerical tests and analysis 
In this section two kinds of famous benchmarks are simulated to demonstrate the accuracy and performance of 

newly proposed scheme. The first kind is the one dimensional Riemann problem (Sod’s shock tube) and the second 

one is the two dimensional supersonic Ramp and bump. 

 

 

Sod’s shock tube 

In this paper, a two-dimensional model has been used to solve one-dimensional problem. This problem is a well-

known Riemann problem presented by Sod. In the Sod problem, the initial condition (at t =0.0) is defined by: 

}(#, %a, %*, F)|~ = (1,0,0,1)														
(#, %a, %*, F)|� = (0.125,0,0,0.8)  

Fig. 1 shows the computed density, pressure, velocity, temperature profiles at t = 0.2. The size of grid is ∆O = ∆� =10y\, time step ∆� = 10yb, and, v = 	2. The two sets of results have a satisfying agreement. 
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Fig.1 Comparison of numerical and theoretical results for the Sod shock tube 

Supersonic Ramp Test Case 

The supersonic ramp test case has an inlet Mach number of 2.0. The ramp geometry consists of a 10�compression 

ramp followed by an 10�expansion corner along the lower channel wall. Fig 2 show s the generated grid for 

supersonic ramp. Fig 3 shows the computed pressure coefficient at lower wall and compare it with exact solution. 

The two sets of results have a satisfying agreement  Fig 4 shows the contours of Mach, Density, Internal Energy and 

Pressure at steady state. Fig 5 shows the contour of Mach number at different time steps. 

 

 
Fig.2 computational domain for supersonic ramp 
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Fig.3 Comparison of numerical and theoretical Cp for supersonic test case 

 

  

  

 
Fig.4 Contours of Mach, Density, Internal Energy and Pressure at steady state   

 

 

 
(a) 

(b) 
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(c) 
 

(d) 

(e) 

 

Fig.5 Contours of Mach number at different time steps 
 

 

Supersonic Bump Test Case 

The bump test case features a supersonic channel flow with a circular arc bump placed along the lower wall. The 

inlet Mach number is 1.4 and the circular bump is 4% thick. 

Fig 6 show s the generated grid for supersonic ramp. Fig 7,8 shows the computed mach number  at lower and upper 

walls and compare it with valid results. The two sets of results have a satisfying agreement  Fig 9 shows the 

contours of Mach, Density, Internal Energy and Pressure at steady state. Fig 10 shows the contour of Mach number 

at different time steps. 

 

 
Fig.6 computational domain for supersonic bump 
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Fig.7 distribution of mach number on lower wall 

 

 

Fig.8 distribution of mach number on upper wall 
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Fig.9 Contours of Mach, Density, Internal Energy and Pressure at steady state 

 
 

 
(a) 

 

(b) 

 
(c) 

 

(d) 
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(e) 

 

(f) 

Fig.10 Contours of Mach number at different time steps 

 

Conclusions 

Lattice Boltzmann model for compressible flows has been studied for some years. Although some discrete velocity 

models themselves have been freed from the constraint of low Mach number, the practical simulation to high-speed 

flows is still suffering from the numerical stability problem. That is because the code does not satisfy the von 

Neumann stability condition under that condition. We overcome such a problem with LB model. The new model is 

composed of the following components: the original DVM by Watari, a modified Lax–Wendroff scheme and an 

additional artificial viscosity. The proposed model is validated by some typical benchmark tests. this scheme in one 

dimensional Riemann problems (Sod shock tube), show good accuracy and numerical stability.  

this model also shows the very good accuracy in two dimensional problems (Supersonic Bump and Ramp), both 

steady and unsteady state. Future work aims at a more complete theory of the numerical accuracy versus stability. 
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