
International Journal of Advanced Research in

  Electronics, Communication & Instrumentation Engineering and Development

Volume: 1 Issue: 1 08-Nov-2013,ISSN_NO: 2347 -7210

 

Algorithm for Reduced Complexity and High
Performance Embedded MIMO Receivers

D.JESLINE ANTONIO, M.E (Assist.prof) ALLAN J WILSON, M.E (Assist.prof)

SUN College of Engg & Tech. SUN College of Engg & Tech.

Mail id: jesline.antonio6@gmail.com Mail id: allan94449@gmail.com

Abstract –Matrix inversion is a key enabling technology in MIMO (Multi Input Multi Output) communication systems. To
date, no matrix inversion implementation has been devised which supports real-time operation for these standards. In
this, we overcome this barrier by presenting a novel matrix inversion algorithm which is ideally suited to high 
performance floating-point implementation. Specifically, we present a matrix inversion approach based on modified 
squared Givens rotations (MSGR). This is a new QR decomposition algorithm which overcomes critical limitations in 
other QR algorithms that prohibits their application to MIMO systems. In addition, we present a novel modification that 
further reduces the complexity of MSGR by almost 20%. This enables real-time implementation with negligible reduction 
in the accuracy of the inversion operation, or the BER of a MIMO receiver based on this.

Index terms-BLAST, matrix inversion, multiple input multiple output (MIMO), QR decomposition 
Fig. 1. MIMO system overview.

mean square error (MMSE) equalization during
channel detection [3]. As a result, to implement
algorithms such as MMSE designers currently have
to develop custom algorithms which avoid explicit
matrix inversion [8]. This severely complicates the
implementation process.
This paper presents a new matrix inversion approach
which overcomes this real-time performance barrier.
We develop a general purpose complex-valued
matrix inversion algorithm and study its application
to and integration in MIMO receiver algorithms and
embedded architectures. Specifically, we make two
main contributions.

1) We derive a new QR decomposition (QRD)-
based algorithm known as modified squared
Givens’ rotations (MSGR), which
overcomes key limitations with other QRD-
based approaches which hinder their
adoption in MIMO receiver architectures.

2) We show how the complexity of MSGR-
based matrix inversion may be further 
reduced by almost 20% by removing a scale 
factor term, with little effect on its
numerical stability, or the perceived BER of
a MIMO receiver in which it is integrated.

This paper is structured as follows. Section II systems. Section III resolves these issues, deriving
summarises real-time matrix inversion approaches, the MSGR algorithm. Section IV describes how we
justifying the use of QR-based approaches, and can reduce the complexity of MSGR.

I. INTRODUCTION

MULTIINPUT–MULTIOUTPUT (MIMO) 
technology, such as BLAST [1]–[3] for WiFi or 
WiMAX offers the potential to exploit spatial
diversity in a communications channel to increase its
bandwidth without sacrificing larger portions of the
radio spectrum. The general form of a MIMO system
composed of nt transmit and nr receive antennas is
outlined in Fig. 1. Implementation of these systems
involves satisfying the real-time performance
requirements of the application (in terms of metrics
such as throughput, latency, etc.), in a manner which
efficiently exploits the embedded device(s) to
implement such systems. A key feature of MIMO
receivers is their reliance on matrix computations
such as addition, multiplication and inversion for 
example, to enable operations such as minimum
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 outlines barriers to their adoption in BLAST MIMO

TABLE I
MATRIX INVERSION COMPLEXITY COMPARISON

Approach

Gaussian
[20]

Cholesky
decomposition

[20]

Square root
decomposition

[21]
Conventional givens

rotations QRD
[20]

Squared givens
rotations QRD

[16]

II. BACKGROUND

MIMO systems grow larger to incorporate 
more antennas, both solutions will tend to the same
complexity. However, given that the matrix inversion
approaches in [4]–[7] are all either throughput or
latency deficient by a factor of at least 2, there appear
to be substantial issues to be overcome before real-
time matrix inversion in systems such as 802.11n is 
feasible.

Matrix inversion techniques are, generally,
either iterative or direct [9]. Iterative methods, such
as the Jacobi or Gauss-Seidel methods, start with an
estimate of the solution and iteratively update the 
estimate based on calculation of the error in the
previous estimate, until a sufficiently accurate
solution is derived. The sequential nature of this

are an attractive alternative not only because of their
ability to overcome the symmetric restriction, but
also because of their innate numerical stability [10].
Furthermore, the plentiful data and task level 3)
parallelism available in these algorithms has
previously been comprehensively exploited in a
range of algorithms and architectures for recursive
least squares (RLS) in adaptive beam forming and
RADAR [11]–[13].

Additions Multiplications
(nr=4) (nr=4)

2nr
3-nr

2+n 2(nr
3+nr)

(116) (136) 

2nr
3-nr

2+n 2(nr
3+nr)

(116) (136) 

5nr
3+3nr

2 9nr
3+7nr

2

(368) (688) 

Divisions Square roots
(nr=4) (nr=4)
2nr

2-n nr(4) 
(28)

2nr
2-n nr(4) 

(28)

nr
2(16) 0(0)

3nr
2-nr 3/2(nr

2-nr)
(44) (18)

5/2nr
2-3/2nr 0(0)

(34)

32/3 nr
3+11nr

2-47/3
nr

(796)

28/3nr
3+7/2nr

2-
7/6 nr

8nr
3+nr

2-6nr

(504)

8nr
3-4nr

2

(448)

process can limit the amount of available parallelism
and make high throughput implementation
problematic [9]. On the other hand, direct methods
such as Gaussian elimination (GE), Cholesky
decomposition (CD), and QRD typically compute the
solution in a known, finite number of operations and
exhibit plentiful data and task-level parallelism.
Table I describes the complexity of a number of
direct matrix inversion algorithms in MIMO
communications systems composed of nt=nr

antennas, as well as an absolute complexity measure 
for nr=4.

As Table I shows, CD suffers from the
drawback of requiring symmetric matrices, a
condition not guaranteed to occur in MIMO systems, 
limiting its applicability. Despite their relatively high
complexity as compared with CD, QRD approaches

Page 2
no reported variants which exhibit 
significantly lower complexity whilst
maintaining accuracy.
There is no currently reported
implementation of SGR based matrix
inversion which can meet the high real-time
performance demands of modern MIMO 
receivers.

III. MODIFIED SGR FOR 
COMPLEX MATRIX INVERSION 
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As regards QRD algorithms, Givens’ 
rotations [14] QRD algorithms are more easily
parallelized than Householder Transformations [15],
but the methods for implementing Givens’ rotations,
i.e., conventional Givens’ rotations (CGR) [14], 
squared Givens’ rotations (SGR) [16], and CORDIC
[17] all place different constraints on
implementations. The authors in [18] show that
fixed-point CORDIC-based QR algorithms are more
accurate for linear MMSE detection of practical
MIMO-OFDM channels than SGR employing
conventional arithmetic. However this comes at an
excessively high area cost due to the use of CORDIC
operators; indeed [8] and [19] report 3.5:1 and 3:1 
area efficiency advantages when employing
conventional mathematical operators as opposed to
CORDIC; [19] also describes a 25:1 sample rate
advantage associated with employing conventional
arithmetic and demonstrates that floating-point
arithmetic can be employed to overcome the
precision issues outlined in [18] at no area cost.
These factors seem to favour SGR-based
implementation over CORDIC. Whilst CGR does not
fundamentally require CORDIC for implementation,
it does require widespread use of costly square-root
operations, and is generally more computationally
demanding than SGR (see Table I). 

As such, the ability of SGR to avoid the use
of CORDIC and square-root operations, reduce
overall complexity and exploit floating-point
arithmetic at no area cost promises an appealing
blend of numerical stability and computational
complexity.There are, however, a number of critical
deficiencies which restrict its adoption in MIMO
systems.

1) As described in Section III-B, SGR
produces erroneous results when zeros
occur on the diagonal elements of either the
input matrix or the partially decomposed
matrices generated during the
triangularization.

2) Complex-valued SGR is highly
computationally demanding and there are

To illustrate how MSGR extends SGR for
complex-valued data, we use an example. Consider a
3×4 matrix of complex values. MSGR generates an
upper triangular matrix, eliminating a1, b1and b2 in a
three-stage approach.

r r1 r2 r3 r4

u1

………..(11)

Stage 3: Rotate a and b to eliminate. To carry out
these rotations, translated from V -space to U –space.

Here Q = Hermitian transpose Q

A-1 = (QR) = R -1QH-1

A. Modified Squared Givens Rotations

Inversion of a matrix A can be performed by
firstly decomposing this into an upper triangular
form, which can be more easily inverted. QRD is one
such approach to perform this triangularization by
decomposing A into two resulting matrices Q and R

A= QR …………. (1)

Where, Q- unitary matrix.

R- upper triangular matrix.

-1 H

…………..(2)

After QRD, inversion is much simpler because the
inversion of the upper triangular matrix can be
derived using back substitution as in,

�

�

�

�
rkj rjj i < j

i = j

otherwise

�-∑w
ik

�

�

�…(3)

�

j-1

k =1

1
rjj

0

�

�

�

�

�

�

�� �
Using SGR, the matrix A is decomposed in to QA
matrix, and U is an upper triangular matrix.

The inversion of a matrix using SGR is

A-1
= (QA DUU)-1 = U-1 ( QADU

-1)-1

(QA DU
-1)-1= DR Q …………. (4) HH

= QA

wij =

�

�

� vb -
vb1 �1

2

1

2

r1

r1

r1

r1
�

r1
�

�
�

� vb -
vb1

�

�
�

�
u = w

�
�
�

b = wb r

a 2 a3

b2 b3

ba 4
�

b4 �

�
�a� �a=

� �

� � �

� � �
= wb……….(5)

1

2
1

��b� �b
1

vb

�
�

Stage 1: Rotate rows r and a to eliminate a1 element.
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 *
ua = a2 a

� � � �
……….(6)

process for r to be

...................(7)

1

a = wa v

r1 v1 � r1 v1 �

r1 � r1 �

…………..(8)
Updating of row can be written as,

Stage 2: Rotate r and b TO ELIMINATE b1, row b
must now be translated to V-space for rotation
according to,

Effectively, r and a have been translated to U and V -
space, respectively.

……….. (9)

C. Back Substitution

MSGR decomposes the input matrix as A, which
may be inverted as U-1 ( QADU

-1)-1 . Inversion of the
upper triangular matrix U can be computed using
back-substitution on the result of the MSGR
operation.

Given this back-substitution operation, MSGR-based
matrix inversion may be split into three sub
operations:

Decomposition of the input matrix A into
the upper triangular matrix U , formation of U-1 from 
U via back-substitution, and finally multiplication by
( QADU

-1)-1 to form the product U-1 ( QADU
-1)-1 . We 

can use this to formulate an operational model of 
MSGR-based matrix inversion to complement the
mathematical model described thus far. The

q = (r1
*r1 + a1

*a1 ) 1
2

u1
�

� �
�v u1 ��

…….…..(12)

Fig.2. MSGR operation sequence

2 � - � � � 2 � - ��

� �

�
� w a

r1 � v1
u 2

�� � w a
r1 �

v1
u ��

�

*
1 1

r1
�v2 r1 �

r = q -1 (r1
*r1 + a1

*a)

a = q -1 (-a1r + r1a)

Introducing U , the update
expressed as,

u = r1
* r1

*
u = r1 r

u = u + a1
*a

=

2

*
= wa v2 v

1

b = wb vb

2 � � 2 � �
�

� �

Similarly, introducing v, where wa > 0 is a scale
factor

2

1 1

a = wa �v - r = wa �v -
u�

r � u

u1

u1

wa = wa

-1

vb = w- 2 b = w
1

wb
2 vb

1

2 …….. (13) 

The final phase of translating the last row to
U-space is necessary in order to make the diagonal
element in this row a real value. The MSGR method
for the general case is described using where k is the
kth column being processed. 

……… (14)

…………. (15)

………….. (16)

v = v -� �
� �

u
vk

u k

uk

uk

u = u + wvk
*v

� �
� �

w = w
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 formation of from via back-substitution and
subsequent multiplication by is then performed by an
Invert and Multiply (IAM) Array.

j-1

( ukj ) i < j
ik

i = j
ij

i > j

� �

IV. REDUCED COMPLEXITY MSGR-
BASED MATRIX 

INVERSION FOR BLAST MIMO 

Reduced Complexity MSGR-Based Matrix 
Inversion

.. (18)
We propose to remove the scale factor w and its 
associated computations from the MSGR cells to 
reduce the complexity of MSGR-based matrix
inversion. Using MSGR without the w-factor, the
matrix A is decomposed as in

A= QW UW

Page 5

�

� �
uk = 0, vk ≠ 0�v = -u

� �
�w = w �

This caveat fully defines MSGR based matrix
triangulation and has resolved the outstanding
barriers to employing SGR for complex valued
matrix inversion. It remains to convert the
triangularized matrix to the inverse, which requires a
suitable back-substitution operation.

ISR Journals and Publications

�

B. Processing Zero Values Incurred on 
the Matrix Diagonal 

Dohler proposed a solution for dealing with Uk=0, as
given in

�u = wv k
*
v �

for uk = 0,vk ≠ 0�v = arbitrary�

� �

Despite this, the condition of both Uk=Vk=0 has not
previously been considered, and the solutions
proposed in prohibit further processing based on

these updated values.

�u = wvk
*
v�

� �

�w = 0 �
� �

� �
� � ….. (17)

�

�

�
�

�

� 1
�-

u
jj

�

�
�

�

�
�

�
�

∑G
ik

�
�
�u

�0
�
�

1
Gi j = ..(19)

(20)………….
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MSGR without the W-factor, UW is an invertible
upper triangular matrix, and the inversion of A can be
given as in

A-1= (QW UW)-1 = UW
-1 QW

-1.

……… (21)

Once all w-related computations have been removed,
the MSGR array now produces an upper triangular
matrix UW given an input matrix A. 

TABLE II
MSGR COMPLEXITY ANALYSIS

However, whilst the complexity reduction offered by
removing the w-factor is clearly attractive, it is only
advantageous if it does not significantly reduce the
accuracy of the resulting inverted matrices, or the 
accuracy of any MIMO receiver algorithm built upon
MSGR-based matrix inversion.

V. RESULTS AND DISCUSSION

The effect of removing the w-factor on the
accuracy of the resulting inverted matrix is described
in the graphs of Fig.4. These two graphs measure the
deviation of the product of the original matrix and its
inverse from the matrix (y- axis) for each of 200, 4× 
4 MIMO rich scattering Rayleigh-fading channel
matrices, which are enumerated on the x-axis. The
complexity of MSGR is reduced by exclude the w-
factor.

In other words, the complexity is reduced by
reduce the number of operations performed in MSGR
matrix inversion. 

ISR Journals and Publications

Fig.4 (a) 

Fig 4 (a) shows the MSGR method for
matrix inversion using matlab software. This method
enables a suitable mechanism for complex matrix
inversion and also it reduces the computation
complexity almost 20 percentages.

Fig.4 (b)

Fig 4(b) shows the error plot for MSGR
method. It is the deviation value of identity matrix in
y axis corresponds to the number of matrices in x
axis.

Fig 4(c) shows the comparison plot for

existing method (CORDIC) and the MSGR method.

From this plot clearly shows that the Error rate is less

compared to the existing method. It is because of

Page 6
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perceived BER of a BLAST MIMO receiver based
upon it.
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gives better performance without reducing the

accuracy.
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inversion error. (c) Fixed-point matrix inversion

error.
VI. CONCLUSION

Explicit matrix inversion is a major
bottleneck in the design of embedded MIMO
transceiver architectures. Until now, there has been
no appropriate solution to this problem for state-of
the- art MIMO systems, such as those in 802.11n
systems, with the large disparities between required
and actual performance indicating the need for a
thorough review of both algorithms and architectures
employed.

The work presented in this paper has solved
this problem. We have derived Modified Squared
Givens’ rotations (MSGR), an algorithm for QR-
based matrix triangularization and inversion which 
overcomes deficiencies in the standard SGR
algorithms. This provides a complex-valued matrix
inversion method which not only overcomes key 
factors for integration in MIMO systems, but also
enables a suitable mechanism for complex matrix
inversion more generally. Moreover, we have shown
that the computational complexity of the algorithm 
may be further reduced by almost 20% with minimal 
impact on the accuracy of the inverted matrix or the
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