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ABSTRACT—Available sequence mining algorithms mostly focus on subsequence mining. In this 

mining biological DNA and protein motif mining, require proficient mining of “estimated” patterns 

that are adjacent. The few available algorithms that can be useful to find such adjacent estimated 

pattern mining have disadvantage like poor scalability, lack of guarantee in finding the pattern, 

and difficult in adapting to other applications. In this paper, we present a new algorithm called 

FLexible and Accurate Motif DEtector (FLAME). FLAME is a flexible suffix-tree-based algorithm 

that can be used to find frequent patterns with a variety of definitions of motif (pattern) models. It is 

also correct, as it always finds the pattern if it live. Using both actual and artificial data sets, we 

show that FLAME is rapid, scalable existing algorithms on a variety of performance metrics. In 

addition, based on FLAME, we also address a more general problem, named complete structured 

motif extraction, which allows mining recurrent combinations of motifs under comfortable 

limitation. 

 

KEYWORDS— Motif, sequence mining, suffix tree. 

1,INTRODUCTION 

 

In a number of sequential data mining applications, the goal is to discover frequently 

occurring patterns. To illustrate the characteristics of such an operation, consider Figure 1.  

This figure  shows  the  percentage  change  in  the  stock  price  for  a company over the 

previous minute's average price, for several minutes  in  a  day.  An interesting mining 

question on this dataset is: "Are there any frequently recurring patterns in this time series 

dataset?" Finding such patterns in stock price data can provide valuable insights that inform 

trading strategies. In Figure 1, the bold segments highlight a pattern that occurs four times 

in the dataset. Note that the recurring subsequences are similar, but not identical. The 

challenge in discovering such patterns is to allow for some noise in the matching process. 

At the heart of such a method is the definition of a pattern, and the definition of similarity 

between two patterns. This definition of similarity can vary from one application to 

another. A simple approach in the case of data such as in Figure 1 is to define a tolerance 

value, /, and consider two sequences to be similar if  the  corresponding  numerical  values  

in  the  sequences  are within / of each other.  
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This approximate subsequence mining problem is of particular importance in 

computational biology, where the challenge is  to  detect  short  sequences,  usually  of  

length  6-15,  that occur frequently in a given set of DNA or protein sequences. These short 

sequences can provide clues regarding the locations of so called “regulatory regions", 

which are important repeated patterns along the biological sequence. The repeated 

occurrences of these short sequences are not always identical, and  some  copies  of  these  

sequences  may  differ  from  others in  a  few  positions.  The  similarity  metric  that  is  

used  here could be complex - for example, when comparing proteins, a similarity matrix 

like PAM [1] or BLOSUM [2], may be used for comparing the "distance" between each 

symbol (protein) pair. These frequently occurring patterns are called motifs in 

computational biology. In the rest of this paper, we use this term to describe frequently 

occurring approximate sequences.  
 

 
 

Fig 1. Stock Data: A frequent approximate pattern is highlighted in bold. 

 

Clearly,  different  applications  require  different  similarity models  to  suit  the  kind  of  

noise  that  they  deal  with.  It  is desirable for a motif mining algorithm to be able to deal 

with a  variety  of  notions  of  similarity.  In  this  paper,  we  present a  powerful  new  

model  for  approximate  motif  mining  that fits several applications with varying notions 

of approximate similarity,  including  the  examples  described  above.  We  also present 

FLAME (FLexible and Accurate Motif DEtector) - a novel motif mining algorithm which 

can efficiently find motifs that satisfy our model.  
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We  note  that  the  problem  of  motif  mining  is  related  to the  problem  of  mining  for   

 

frequent  itemsets  [3],  and  frequent  subsequences  [4].  The  problem  of  finding  

frequently occurring  (non-contiguous)  subsequences  in  large  sequence databases has 

been extensively studied in previous works [4]- [8].  Traditionally,  B  is  called  a  

subsequence  of  A,  if  B  can be  constructed  by  projecting  out  some  of  the  elements  

of sequence A. For instance, if A is the sequence "a,b,a,c,b,a,c", the sequence "a,b,b,c" is a 

subsequence constructed by choos- ing  the  1   , 2   , 5   ,  and  7th elements  from  the  

original sequence  and  omitting  the  rest.  While  mining  for  frequent non-contiguous  

subsequences  has  many  uses,  it  is  not  appropriate  for  many  applications  such  as  

DNA  and  protein motif mining. A subsequence constructed by gluing together distant  

parts  of  the  original  sequence  is  not  meaningful  in these  applications.  In  mining  for  

motifs,  we  are  interested in  contiguous  subsequences.  Furthermore,  previous  work  on 

non-contiguous subsequence models cannot easily incorporate noise tolerance in the way 

that contiguous motif models can. In short, subsequence mining and motif mining are 

different data mining operations, and there are distinct applications of each  of  these.  This  

paper  focuses  on  the  contiguous  subse- quence (motif) mining problem. Readers closely 

familiar with traditional  (non-contiguous)  subsequence  mining  algorithms may note that 

some of these methods can be adapted to mine for  contiguous  subsequences  (e.g.  [6],  

[7],  [9],  [10]).  In  the extended version of this paper [11], we compare our method with 

some of these methods, and show that FLAME is faster by an order of magnitude.  

 

Motivated  by  the  problem  of  finding  frequent  patterns in  DNA  sequences,  which  

has  profound  importance  in  life sciences,  the  computational  biology  community  has  

developed  numerous  algorithms  for  detecting  frequent  motifs  using  the  Hamming  

distance  notion  of  similarity.  YMF [12], Weeder [13], MITRA [14], and Random 

Projections [15] are examples of algorithms in this category. Compared to this class of  

algorithms,  we  show  that  FLAME  is  more  flexible,  and can  use  more  powerful  

match  models.  We also demonstrate through empirical evaluation that FLAME is more 

scalable than these existing methods and can be an order of magnitude faster for mining 

large databases.  

 

There are several applications of motif mining in addition to those mentioned above. It is 

often the first step in discovering association rules in sequence data ("basic shapes" in [16] 

and "frequent patterns" in [17]). It can also be used to find good seeds for clustering 

sequence datasets [18]. Records of medical signals, like ECG  or respiratory  data [19] 

from patients  can also  be  mined  to  find  signals  that  can  indicate  a  potentially critical 

condition. 

 

We make the following contributions in this paper:  

ISRJournals and Publications Page 386



International Journal of Advanced Research in

  Computer Science Engineering and Information Technology

Volume: 4 Issue: 3 22-Mar-2015,ISSN_NO: 2321-3337 

 

 

1)  We present a powerful new model that is very general and applicable in many emerging 

applications. We demonstrate the power and flexibility of this model by applying it to 

datasets from several real applications.  

 

2) We  describe  a  novel  motif  mining  algorithm  called FLAME (FLexible and 

Accurate Motif DEtector) that uses  a  concurrent  traversal  of  two  suffix  trees  to  

efficiently explore the space of all motifs.  

The  remainder  of  the  paper  is  organized  as  follows:  Section  II  presents  related  

work,  and  Section  III  describes  our model  for  motifs.  In  Section  IV,  we  present  the  

FLAME algorithm. Section VI contains our experimental results, and Section VII contains 

our conclusions.  

 

2,RELATED WORK  

 

There is a vast amount of literature on mining databases for frequent patterns [21]-[23]. 

Early work focused on mining association rules [3]. The problem of mining for 

subsequences was introduced in [4].  Subsequence  mining  has  several  applications,  and  

many algorithms  like  SPADE  [5],  BIDE  [6], CloSpan [7] (and several others) have been 

proposed as improvements over [4]. Yang et al. [8] use a statistical sampling based  method  

with  a  compatibility  matrix  to  find  patterns in  the  presence  of  noise.  However,  they  

primarily  focus  on subsequence mining, while we focus on contiguous patterns.  

Some subsequence mining algorithms allow certain constraints.  Constraints  which  limit  

the  maximum  gap  between two  items  in  the  subsequence  make  it  possible  to  use  

these algorithms  to  mine  for  contiguous  patterns.  Algorithms  like EXMOTIF   [24]  

and  RISO  [25]  are  designed  to  efficiently find  multi-motifs,  i.e.  Simple motif patterns 

separated by variable length spaces. FLAME does not target the multi-motif problem,  but  

can  be  be  used  as  a  building  block  for  multi- motif mining. Algorithms such as 

cSPADE [9], CloSpan [7], Pei et al. [10], [26] can be adapted to mine for exact contiguous 

motifs. An obvious  reason why these are unsuitable for approximate frequent pattern 

mining is that these algorithms do  not  include  a  notion  of  noise  or  an  approximate  

match. Furthermore,  they  tend  to  be  inefficient  even  when  used for  exact  substring  

mining.  FLAME, on the other hand is extremely efficient even for approximate substrings.  

Several other algorithms such as the Yeast Motif Finder [12] (YMF), Weeder [13], 

MITRA [14] have been used for finding motifs. YMF is a simple algorithm that computes 

the statistical significance of each motif.  YMF  scales  very  poorly  with increasing  

complexity  of  motifs,  and  thus  cannot  be  easily adapted  to  other  applications.  

Weeder  is  a  suffix  tree  based algorithm that makes  certain assumptions about the way 

the mismatches  in an instance of the motif  are  distributed.  This makes  Weeder  

extremely  fast,  but  it  is  not  guaranteed  to always find the motif. Weeder too, cannot be 

adapted for other motif models.  MITRA  is  a  mismatch  tree  based  algorithm which  
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uses  clever  heuristics  to  prune  the  large  space  of possible motifs. MITRA is very 

resource intensive and requires large amounts of memory. 

  

A host of techniques have been developed to find sequences in  a  time  series  database  

that  are  similar  to  a  given  query sequence [33]-[36]. However, there is little published 

work in finding motifs in time series databases. Time series data such as stock prices, 

economic indexes, time varying measurements from sensors and medical signals like 

ECG's can be mined for motifs, and all have compelling applications. Patel et al. [18] show  

that  time  series  data  can  be  discretized  and  converted into a sequence over a fixed 

alphabet and mined using existing motif mining algorithms. Another algorithm that finds 

frequent trends  in  time  series  data  was  proposed  by  Udechukwu, Barker,  and  Alhajj  

in  [37].  However,  these  algorithms  mine for  exact  frequent  patterns,  and  are  difficult  

to  employ  in the case of noisy datasets. Chiu et al. describe an algorithm in  [20]  (based  

on  the  Random  Projections  algorithm  [15]) which accounts for noise in the data. 

However, this algorithm is  also  limited  to  a  simple  mismatch  based  noise  model.   

 

3,THE MODEL  

 

A  critical  aspect  of  the  motif  mining  problem  is  defining the model under which two 

or more sequences are considered to match (approximately). Developing such models 

poses an interesting challenge: On the one hand, we want a model that is robust enough to 

detect the occurrence of a pattern even in the presence of noise, and on the other hand, we 

do not want it to be so general that it matches unrelated subsequences. Since different 

applications may have different criteria for how to strike this balance, a natural approach is 

to develop a flexible model with a few intuitive parameters that can be set by the user based 

on the application characteristics. In this section, we present a powerful new model for 

motifs that can be used for pattern mining in many different domains.  

 

Throughout  this  section,  we  will  assume  that  the  input sequence  is  composed  of  

symbols  from  a  discrete  alphabet set. However, our methods can also be applied to 

continuous time series datasets by converting such datasets into a symbolic sequence 

dataset by simply discretizing the numeric data. In fact such a transformation is frequently 

carried out for mining continuous time series datasets [18], [20].  

 

We  call  our  motif  model  the  (L, M, s, k)  model  after  the four parameters that 

determine it. L is the length of the motif, M  is a distance matrix that is used to compute the 

similarity between  two  strings,  s  is  the  maximum  distance  threshold within which two 

strings are considered similar, and finally, k is the minimum support required for a pattern 

to qualify as a motif.  
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The  (L, M, s, k)  model  is  a  very  intuitive  and  powerful model,  and  permits  the  

user  a  lot  of  flexibility  in  making the  right  tradeoff  between  specificity  and  noise  

tolerance  of a  model.  As we describe below, much of this power comes from the ability 

to use any matrix M as the distance matrix. This property makes it useful for a variety of 

complex motif mining tasks.  The  matrix  M  allows  us  to  define  a  distance penalty  

when  a  symbol  X  in  the  model  matches  a  symbol Y in the data sequence. The penalty 

is specified by M(X, Y), an entry in the matrix.  The  total  distance  between  the  two 

strings  is  computed  by  summing  the  distance  penalties  of the corresponding symbols.  

 

That is, if A = a  1a  2a  3...a  n  and B = b  1b  2b  3...b n are two strings, then the 

distance between A and B under this model is d(A, B) =   n   M(a , b ). Formally  

speaking,  a  string  S  is  an  (L, M, s, k)  motif  if there  exist  at  least  k  strings  T 1, ..., T  

k  in  the  database  such that  each  of  them  is  of  length  L,  and  d(S, T  i)    s,  where d  

(A, B)  =    n   M(a , b )  is  the  distance  function.  Every string S that satisfies the above 

is an (L, M, s, k) motif. Note that the string S need not actually appear in the database for it 

to qualify as a motif. Only the instances T i need to be in the database.  

 

Protein  motif  mining  is  an  example  of  a  domain  which requires a matrix based 

measure of similarity. Finding regions in protein sequences that appear frequently in 

different proteins is useful in inferring the functional sites in proteins.  As  in the  case  of  

DNA,  the  patterns  in  protein  sequences  do  not repeat exactly. The instances of the 

pattern usually differ from the model in a few positions.  To complicate things further, not  

all  mismatches  are  equally  bad.  Some amino acids are very similar to each other, while 

some are very different. For instance Alanine and Valine are both hydrophobic amino 

acids, while Glycine and Serine are both hydrophilic. The matrix can be used to award a 

small penalty for M(X,Y) when X and Y are  similar  (Alanine  and  Valine,  for  instance)  

and  a  larger penalty  otherwise  (say,  Alanine  and  Glycine)  [2].  Popular substitution 

matrices such as PAM [1] and BLOSUM [2] can easily be used in our model.  

 

Next, we demonstrate how this model can also be applied to the stock price example of 

Section I. Suppose that we had normalized the data for firm ABC. Assume that the 

normalized stock price  values  are between  0-10. If we  discretized them to integers, we 

could use letters A - K to represent 0 - 10. Suppose further that  we  wanted  to  find 

sequences  of  length 10 that appeared (approximately) in the database at least 20 times.  If  

we  wanted  to  use  the  sum  of  squared  differences as the distance metric to check for 

similarity, we can simply use  a  matrix  where  M(X,Y)  is  set  to  (v(X)  -  v(Y)) 2  where 

v(X) is the numerical value corresponding to the symbol X. Using  this  matrix,  we  can  

specify  that  an  instance  matches the  model  if  the  Euclidean  distance  between  them 

is  within a given threshold. We model this problem as a (10, M, s, 20) motif  finding  
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problem,  where  s  is  an  appropriately  chosen similarity threshold.  

The matrix can be adapted to allow other kinds of models. In  fact,  the  matrix  approach  

lets  us  simulate  any  L  p-norm (Manhattan distance, Euclidean distance, etc.). If we 

wanted to match two sequences only if the corresponding values (in the two sequences) 

were within 2 units of each other, (the /-error tolerance model from Section I), we would 

just set M(X,Y) = 0 where |v(X) - v(Y)|  2, and  everywhere else. In general, any 

measure that can be computed in an incremental fashion by comparing the symbols in the 

corresponding positions can be simulated by constructing an appropriate distance penalty 

matrix.  

We now discuss two special cases of the (L, M, s, k) model that  are  commonly used in 

computational biology and other domains - the (L, d, k) and (L, f, d, k) models.  

A.  Special Case: The (L, d, k) Model  

The (L, d, k) model is a mismatch based model commonly used in computational biology 

for  finding DNA  motifs. The distance  measure  between  two  strings  is  the  Hamming  

dis- tance,  or  merely  the  number  of  mismatches.  The  (L, d, k) model  is  

parameterized  by  the  length  of  the  string  that  we want  to  find  (L),  the  maximum  

Hamming  distance  (d),  and the support (k). The parameter d controls the amount of noise 

we wish to tolerate.  

 

The  (L, d, k)  model  is  a  special  case  of  the  (L, M, s, k) model.  It  can  easily  be  

simulated  by  a  matrix  by  setting M (X, Y )  =  1  if  X  6=  Y   and  M(X, Y )  =  0  if  X  

=  Y . This way, the distance function simply counts the number of mismatches. We set s to 

d and use the k from (L, d, k) as our minimum support.  

 

One  of  the  applications  of  this  model  is  in  the  field  of computational  biology.  The  

(L, d, k)  model  and  its  derivatives  have  been  considered  a  good  fit  for  DNA  

regulatory motifs [32]. Briefly, the related problem of using this model to  find  regulatory  

motifs  in  DNA  is  as  follows:  Biologists today are interested in understanding how 

different genes  in the genome are regulated and the way they interact with each other.  To  

this  end,  biologists  often  study  genes  that  exhibit similar expression patterns to extract 

clues about the proteins that  control  their  expression.  It  is  believed  that  genes  that are  

co-regulated  by  the  same  protein  (called  a  transcription factor) share some signal that 

allows the transcription factor to recognize the gene and turn it on. This signal is usually 

present in the region upstream of a gene (within a few thousand base pairs) called the 

promoter region. The signature is usually a short  string  of  DNA  6-15  bases  long.  As  is  

often  the  case in  biology,  these  signatures  are  seldom  identical,  and  differ in a few 

positions from one gene promoter region to another. Finding  this  noisy  signature  that  is  

common  across  all  the genes  is  a  very  important  step  towards  locating  the  binding 

site for the transcription factor. Modeling the set of promoter regions as our database, and 

the signature binding site as an (L, d, k) pattern, we can simply apply the FLAME 
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algorithm to  solve  this  problem.  We  show  in  Section  VI,  that  this  is indeed an 

effective approach.  

 

In most practical situations we don't know the exact value of L, and therefore, we might 

have to try several values. In the case of DNA regulatory patterns, we know that the 

signature is usually between 6 to 15 bases long, and therefore we can try these lengths with 

varying number of mismatches.  

The (L, d, k) model can also be used in other applications to tolerate an occasional burst 

of noise. If two sequences were identical  except  for  the  addition  of  a  noise  spike  in  

one  of them, they will match under a 1-mismatch model.   Consider the two sequences 

shown in Figure 2. The two bold segments are identical except for the single spike in the 

lower sequence. Such  spikes  may  occur  due  to  measurement  error  or  other reasons,  

and  an  (L, d, k)  model  will  be  able  to  tolerate  this noise and correctly match the two 

sequences.  

 

We show in Section VI that FLAME is faster than several existing algorithms that can 

only find (L, d, k) motifs.  

 

 

Fig. 2.    Potential use of the (L, d, k) model - the lower segment is identical to  the  upper  segment  

except  for  the  single  spike.  The  (L, d, k)  model  can match these.  

B.  Special Case: The (L, f, d, k) Model  

The  (L, f, d, k)  builds  on  the  (L, d, k)  model  to  include positional  constraints  on  the  

mismatches.  We  introduce  this model   using   an   example:   Consider   the   three   

sequences {ABCD, ACCD, ABCA}.  If ABCD  is  the  model  sequence, the  other  two  

sequences  are  within  one  mismatch  of  the motif,  so  these  sequences  would  

constitute  a  (4,1,3)  motif in the (L, d, k) model. Now consider the sequences 

{ABCD,ACCD, ADCD}. This set also forms a (4,1,3) motif, but the mismatches, 
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whenever they occur, are always in position two (AcCD, AdCD). The (L, f, d, k) model 

allows us to specify the number of fixed  position mismatches (f) along with just  the  

number  of  free  mismatches  (d).  We  look for all model strings whose instances always 

differ from it (if they differ at all) in the same positions.  

The   (L, f, d, k)   model   is   also   a   special   case   of   the (L, M, s, k) model. In order 

to model the fixed position mismatches, we simply augment the alphabet A with a wildcard 

symbol,  say  "?".  For  symbols  in  A,  the  distance  matrix  M is  as  in  the  (L, d, k)  

model, with  M(X, Y ) = 1 if  X  6= Y and zero everywhere else. The wildcard symbol is 

allowed to match any symbol with no penalty, so we set M(?, X) = 0 for all X. FLAME 

considers all model strings of length L over the augmented alphabet such that there are at 

most f  occurrences of the wildcard symbol. This way, the (L, M, s, k) model can simulate 

the (L, f, d, k) model.  

 

We illustrate the advantage of being able to use positionally biased scoring with an 

example.  Consider  a  DNA  dataset consisting  of  5  sequences,each  of  length  500.  

Assume  that each  sequence  has  in  it  the  motif GTGAACAC,  and  each instance  of  

the  motif  has  a  mismatch  at  the  fifth  position. In other words, the dataset contains an 

(8, 1, 0, 5) motif. Note that an (8, 1, 0, 5) motif is also an (8,1,5) motif in the (L, d, k) 

model since a free mismatch can capture a fixed mismatch. If we use the (L, d, k) model to 

retrieve this pattern, we will end up with many extraneous hits that might not be 

meaningful. When we search for an (8,1,0,5) pattern, FLAME (correctly) returns the result 

GTGA?CAC. On the other hand,if we search for (8,1,5), FLAME returns several additional 

hits that satisfy (8,1,5) but not (8,1,0,5). A post-processing step is needed to check if these 

are actually fixed position mismatch motifs. An (L, d, k) model can be used to simulate an 

(L, f, p, k) model if f + p = d with some post processing. However, as we will explain in 

Section V-B , using an (L, f, d, k) model produces a huge cost saving when compared to 

(L, d + f, k) with post- processing.  

 

4,THE FLAME ALGORITHM  

 

In this section, we describe the FLAME algorithm, which can be used to find (L, M, s, k) 

motifs. For ease of exposition, we explain the algorithm using an (L, d, k) model, and then 

describe how we extend it to the full-fledged (L, M, s, k) model.  

Recall  that  an  (L, d, k)  motif  is  a  string  of  length  L  that occurs  k  times  in  the  

dataset,  with  each  occurrence  being within a Hamming distance of d from the model 

string. Given, L  ,  d,  and  k,  a  naive  algorithm  is  to  consider  all  possible strings of 

length L over the alphabet (the space of all models), and  compute  the  support  for  each  

of  them  by  scanning  the dataset. This algorithm is exponential and becomes infeasible 

with large L and d values. One might be tempted to improve this method by considering 

only those strings of length L that actually occur in the dataset.  However, this  approach  
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might miss  motifs  as  the model  string  might  not  actually occur in the dataset even 

once. Assume that we are looking for  a  (6, 2, 3)  pattern,  and  that  the  instances  of  this  

pattern in  the  dataset  are FFCDEF, ABFFEF,  and ABCDAA.  Each instance is at a 

distance of 2 from the model ABCDEF, but the distance between any two instances is 4. If 

we consider only instances from the dataset (which need not contain ABCDEF), then we 

will not find the motif.  

 

The  approach  we  take  in  FLAME  explores  the  space  of all possible models. In order 

to carry out this exploration in an efficient  way,  we first  construct  two suffix trees:  a 

count suffix tree on the actual dataset (called the data suffix  tree), and a suffix tree on the 

set of all possible model strings (called the  model  suffix  tree).  This  second  set  is  

typically  the  set of all strings of length L over the alphabet. As we describe below,  the  

model  suffix  tree  helps  guide  the  exploration  of the  model  space  in  a  way  that  

avoids  redundant  work.  The data  suffix  tree  helps  us  quickly  compute  the  support  

 
Fig 3: A count suffix tree on the string, ABBCACCB. The count are indicated inside the 

node. of a model string. Recall that a count suffix tree is merely a suffix tree  in  which  

every  node  contains  the  number  of  leaves  in the  subtree  rooted  at  that  node. Every  

node contains the number of occurrences of the string corresponding to that node. 

Essentially, the data suffix tree combines the work common  to  finding  the  support  for  

models  like ABCDE  and ABCDF (having a common prefix) and perform it only once.  

Since  the  second  suffix  tree  (built  on  all  possible  model strings)  can  be  extremely  

large,  FLAME  does  not  actually construct this suffix tree. Rather, it algorithmically 

generates portions  of  this  tree  as  and  when  needed.  FLAME  then explores the model 

space by traversing this (conceptual) model suffix tree. Using the suffix tree on the dataset, 

FLAME computes support at various nodes in the model space and prunes away large 
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portions of the model space that are guaranteed not to produce any results under the model. 

This careful pruning (described in more detail below), ensures that FLAME does not waste 

any time exploring models that do not have enough support.  The  FLAME  algorithm  

simply  stops  when  it  has finished traversing the model suffix tree and outputs the model 

strings that had sufficient support.  
 

To  understand  our  strategy  of  pruning  the  model  suffix tree, consider the following 

example: Assume that the dataset consists of sequences over the alphabet {A,B,C,D,E}. 

The dataset and the values of L, d, and k  are specified as input. All the strings of length L 

starting with the symbol A form a subset of the model space. We call this the A partition. 

This partition corresponds to all the nodes in the model suffix tree under the subtree 

corresponding to node A. This partition is further divided into sub-partitions with prefix 

AA, AB, AC, AD, and AE. These partitions continue on for L levels, and at the last level, 

we have only one model string for each partition.  
 

5,  EVALUATION  

 

In this section, we present results from various experiments  that were designed to test 

the effectiveness and performance of  FLAME.  We  also  compare  FLAME  with  pattern  

mining algorithms from different application domains. Most existing algorithms  can  only  

work  with  (L, d, k)  motifs  and  do  not support  the  more  general  (L, M, s, k)  model.  

Therefore,  we carry out the comparison between FLAME and these existing methods  

using  only  the  (L, d, k)  model.  Since  we  do  not have  a  competing  algorithm  to  

compare  the  performance  of FLAME on (L, M, s, k), we present a detailed analysis of the 

performance of FLAME as different parameters in (L, M, s, k) are varied.  

We use a variety of datasets for our experiments:  

 

Snake:  This  is  a  snake  protein  dataset  from  [38]  that  was considered for subsequence 

mining in [6]. It consists of 352 different snake venom  protein sequences  of varying  

lengths. The size of the dataset is about 28,000 symbols. The alphabet of  amino  acids  

(that  make  up  the  proteins)  is  of  size  20. Such protein datasets are often analyzed in 

bioinformatics to find  common  patterns  that  might  provide  insights  into  their function.  

 

IBM: This dataset contains second by second average price of IBM stock for all the trading 

days in December 1999 [39]. To reduce the noise in the detailed dataset, we preprocess the 

data using the following standard data processing techniques that are designed to deal with 

short term volatility in stock price information  [40]:  First,  the  data  is  converted  into  a  

minute wise average price using a sliding window. And next, the price values are 

transformed into a percentage change with respect to the price in the previous minute. This 

technique is routinely used to  compare  movement  data  across  different  stocks  that have 

a different face value. The resulting dataset contained 21 sequences  from  21  days,  each  
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of  length  approximately  400 numbers, totaling 8,400 numbers. 

  

Synthetic:  In  order  to  fully  explore  the  space  of  data  sizes and alphabet sizes, we use 

a synthetic data generation method that has been extensively used in several previous 

efforts [13]- [15], [41]. The data is generated as follows: Given the alphabet size, the 

number of sequences, and the size of each sequences, we generate random sequences by 

uniformly drawing symbols from the alphabet. We then randomly choose k sequences and 

implant a pattern of length L with d mismatches at  random positions in each of the k 

sequences. This results in a dataset containing an (L, d, k) motif. The sizes of datasets we 

generate are comparable to those used in previous related papers [13]- [15], [41].  

All the experiments in this section were performed on a 2.8 GHz Intel Pentium 4 processor 

with 2 GB of main memory. The operating system was Fedora Core 4 Linux, kernel 

version 2.6.11.  The  YMF  implementation  was  obtained  from  [42], Weeder from [43], 

and Random Projections (RP) from [44]. RP is a widely used technique for motif mining 

(and has been applied in various domains like time-series mining and DNA motif mining), 

and YMF and Weeder are the leading popular DNA motif mining methods [32]. 

  

As discussed in Section I, FLAME solves a different problem  compared  to  traditional  

sequence  mining  methods  like cSPADE [45] and CloSpan [7]. Nevertheless, for 

completion, we  modified  CloSpan  to  mine  for  contiguous  subsequences (which 

improved its performance by 3 orders of magnitude) and adapted cSPADE to mine 

contiguous motifs. The comparison is  presented in the extended version of this paper [11]. 

The results show that FLAME outperforms these methods by an order of magnitude or 

more and scales significantly better.  

 

VII,  CONCLUSIONS  

 

In   this   paper,   we   presented   a   powerful   new   model: (L, M, s, k)  for  motif  

mining  in  sequence  databases.  The (L, M, s, k)  model  subsumes  several  existing  

models  and provides  additional  flexibility  that  makes  it  applicable  in  a wider variety 

of data mining applications. We also presented FLAME,  a  flexible  and  accurate  

algorithm  that  can  find (L, M, s, k) motifs. Through a series of experiments on real and  

synthetic  datasets,  we  demonstrate  that  FLAME  is  a versatile  algorithm  that  can  be  

used  in  several  real  motif mining tasks. We also show that FLAME outperforms existing 

time series mining algorithms (Random Projections) by more than  an  order  of  

magnitude.  FLAME  is  also  superior  to motif finding algorithms used in computational 

biology (more accurate than Weeder, significantly faster than YMF). We also presented 

experiments which show that FLAME can scale to handle motif mining tasks that are much 

larger than attempted before.  
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