
International Journal of Advanced Research in

 Computer Science Engineering and Information Technology

Volume: 3 Issue: 1 26-Jun-2014,ISSN_NO: 2321-3337

LOAD BALANCING FOR OPTIMAL

SHARING OF NETWORK BANDWIDTH
S.Hilda Thabitha1, S.Pallavi2 , P.Jesu Jayarin3

1PG Scholar,,Dept of CSE,Jeppiaar Engineering College,Chennai,

 2Research Scholar ,Sathyabama University,Chennai-119.

3Associate Professor,Jeppiaar Engineering College.

hildathabitha@gmail.com.

ABSTRACT— Peers participating in a DHT are able to balance their loads in the virtual servers. In

decentralized load balance algorithm in DHT the peers which are participating should be Asymmetric

which introduces another load imbalance problem. In our paper, the symmetric load balancing

algorithm where each peers independently reallocates. Our proposal exhibits analytical performance in

terms of load balance factor and the algorithmic convergence rate and it will not introduce any load

imbalance problem due to algorithmic workload.

1, INTRODUCTION

 DHT are key building blocks in the distributed application. Applications based on DHT include

storage clouds, file-sharing network and distributed file systems. Load balancing algorithm

designed for DHT’s based on virtual servers need to take following into consideration. All load

balancers are capable of making traffic decisions based on traditional OSI layer 2 and 3

information. More advanced load balancers, however, can make intelligent traffic management

decisions based on specific layer 4 – 7 information contained within the request issued by the

client. Such application-layer intelligence is required in many application environments,

including those in which a request for application data can only be met by a specific server or set

of servers. Load balancing decisions are made quickly, usually in less than one millisecond, and

high-performance load balancers can make millions of decisions per second. Load balancers also

typically incorporate network address translation (NAT) to obfuscate the IP address of the back-

end application server. For example, application clients connect directly to a “virtual” IP address

on the load balancer, rather than to the IP address of an individual server. The load balancer then

relays the client request to the right application server. This entire operation is transparent to the

client, for whom it appears they are connecting directly to the application server. An

administrator-selected algorithm implemented by the load balancer determines the physical or

virtual server and sends the request. Once the request is received and processed, the application

server sends its response to the client via the load balancer. The load balancer manages all bi-

directional traffic between the client and the server. It maps each application response to the right

ISRJournals and Publications Page 375

International Journal of Advanced Research in

 Computer Science Engineering and Information Technology

Volume: 3 Issue: 1 26-Jun-2014,ISSN_NO: 2321-3337

client connection, ensuring that each user receives the proper response. The efficient load

balancer depends upon these factors.

2, CAUSES FOR LOAD IMBALANCE

1) Overlay Name space: Every node has an identifier in an address space. An inappropriate no

distribution over the identifier space can lead to load in balance where unequal portion of name

space assigned to notes.

2) Request: A node which is responsible for popular keys at given time is susceptible to become

over load the request load is expressed as number of processed requests per time unit.

3) Routing: A node selects of its neighbors as next hop for a given lookup message. This neighbor

and its communication links become heavily loaded in comparison to others. Routing load is

express as number of forwarded request per time unit

Underlying topology: When the overlay is agnostic of the underlying topology, the request may

go along paths with a huge stretch in comparison to the shortest paths in the underlay. This is a

reason for traffic overhead.

3, SYSTEM ANALYSIS

The transmission time is high to send the data from source to receiver. The sensor nodes in the

networks worked in the batteries only. So the time delay uses more battery power. So the

lifetime of the sensor nodes is also reduced. Another important thing is existing routing

algorithm send message to all the nodes to identify the receiver. It consumes more energy. So

lot of battery power is used. And the routing is also affected by deadlock and overload

problems. Load balancing is such a difficult task in shortest path routing. The transmission of

the real time data requires quality of service such as less delay and efficiency.Load imbalance

problem is tackled by centralized algorithm. Centralized-DHT’s based on virtual servers

requires the participating peers to be asymmetric Organize the Rendezvous nodes in a

hierarchical manner Virtual server matched with peers through rendezvous node in the lower

layer For unpaired virtual server rendezvous peers relay them to the rendezvous in the upper

layer to seek reallocation Until an unpaired virtual server reaches a rendezvous in a highest

layer.Considering large-scale and dynamic DHT networks, the centralized algorithms may

introduce the performance bottleneck and the single point of failure. Consequently, the

rendezvous nodes may experience skewed workloads, introducing another load imbalance

problem. They may also become the performance bottleneck and the single point of failure.

Moreover, the hierarchical network facilitating the load balancing algorithms is prone to

node/communication failure, thus demanding sophisticated maintenance for the networks.

ISRJournals and Publications Page 376

International Journal of Advanced Research in

 Computer Science Engineering and Information Technology

Volume: 3 Issue: 1 26-Jun-2014,ISSN_NO: 2321-3337

3.1 Proposed System

Load balance algorithms overcome the Performance bottleneck and single point of failure. The

server does not get overloaded. Movement cost does not occur. System consists of light peers

and heavy peers. Light peers queries the virtual servers Heavy peers register the load value to

the virtual server. Our paper proposes a dependable and load-balanced P2P system. We view a

P2P system as comprising clusters of peers and present techniques for both intra-cluster and

inter-cluster load-balancing. Notably, load balancing facilitates reduced query response times.

We analyze the trade-offs between the options of migration and replication and formulate a

strategy based on which the system decides at runtime which option to use. Incidentally,

analysis of trade-offs between migration and replication is expected to facilitate load-balancing.

We propose an effective strategy aimed towards automatic self-evolving clusters of peers. This

is important since P2P environments are inherently dynamic. The advantages of this approach

are that the search operation is expected to require less time and only the peers containing the

data items will be involved in answering the query. However, a serious drawback of this

strategy is that the overhead required for keeping the meta-information updated may become

prohibitively high owing to many reasons. A very large number of data items may be added or

updated or deleted within a very short time interval. Nodes may enter or leave the system

frequently, thereby introducing significant amount of redundancies to the meta-information or

making some of the meta-information obsolete.

4, LOAD BALANCING ALGORITHM

In our proposal, as each heavy peer selects its virtual servers with small sizes to migrate, the

resultant movement cost is small. Thus. Analyzing the load balance factor for each peer

suffices. The load balance factor of peer 𝑖 (demoted by 𝐿𝐵𝐹𝑖) is defined as follows:

𝐿𝐵𝐹𝑖 ≜
∑ 𝐿𝑣𝑣∈𝑉𝑖

𝒜

𝐶𝑖
𝑚𝑎𝑥

Where 𝒜 represents our load balancing algorithm. Consequently, due to Eq. (1), we have

| ∑ 𝐿𝑣−
∑ 𝐿𝑣𝑣∈𝑉

∑ 𝐶𝑘
𝑚𝑎𝑥

𝑘∈𝑁
× 𝐶𝑖

𝑚𝑎𝑥

𝑣∈𝑉𝑖𝒜

|

= |𝐶𝑖
𝑚𝑎𝑥 (

∑ 𝐿𝑣𝑣∈𝑉𝑖
𝒜

𝐶𝑖
𝑚𝑎𝑥 − 𝜇)|

ISRJournals and Publications Page 377

International Journal of Advanced Research in

 Computer Science Engineering and Information Technology

Volume: 3 Issue: 1 26-Jun-2014,ISSN_NO: 2321-3337

= |𝐶𝑖
𝑚𝑎𝑥(𝐿𝐵𝐹𝑖 − 𝜇)|.

5, LOAD BALANCE IMPLEMENTATION

The proposed scheme is made up of client registration, server design, client upload and

download, load balancing algorithm phases. Server farms achieve high scalability and high

availability through server load balancing, a technique that makes the server farm appear to

clients as a single server. Server load balancing distributes service requests across a group of

real servers and makes those servers look like a single big server to the clients. The incoming

request is directed to a dedicated server load balancer that is transparent to the client. Based on

parameters such as availability or current server load, the load balancer decides which server

should handle the request and forwards it to the selected server. To provide the load balancing

algorithm with the required input data, the load balancer also retrieves information about the

servers' health and load to verify that they can respond to traffic. To decide which load

balancing solution is the best for the infrastructure, we need to consider availability and

scalability.

Server

Server connection

Uploading files

Downloading files

File – filled chunks

Empty chunks

Partially – filled chunks

Virtual Server

Registration

Client

ARCHITECTURE

Availability is defined by the time between failures. High availability, basically, is redundancy

in the system: if one server fails, the others take over the failed server's load transparently. The

failure of an individual server is invisible to the client. Scalability means that the system can

serve a single client, as well as thousands of simultaneous clients, by meeting quality-of-service

requirements such as response time. Under an increased load, a high scalable system can

increase the throughput almost linearly in proportion to the power of added hardware resources

ISRJournals and Publications Page 378

International Journal of Advanced Research in

 Computer Science Engineering and Information Technology

Volume: 3 Issue: 1 26-Jun-2014,ISSN_NO: 2321-3337

6, DYNAMIC LOAD BALANCING IN CHANNEL ALLOCATION:

At the same time when the channel get overloaded then they are allocated by the load balancer

which as a minimum load. Hence it take less number of time.The components used in dynamic

load balancing are

Channel Packet Queue:Packets from a channel that is to be dispatched waits in a queue of the

respective channel.

Channel Packet Dispatcher:Given a signal from the dispatch control, the channel packet

dispatcher sends the packet from the respective channel queue to the communication medium. It

also sends the details of the dispatched packet such as the size, lifetime and waiting time to the

balance deviation meter.

Channel Threshold Monitor:This component constantly monitors the packet queue of the

specified channel. If the queue length exceeds the set threshold, a force back signal is sent to the

respective channel to slow down the speed of requests from that channel.

Dispatch Control:Given the dispatch decision from the balance deviation meter, the dispatch

control sends a signal to the appropriate channel packet dispatcher to send out a packet from its

channel queue to the communication medium.

CH1 Packet
Dispatcher

CH2 Packet
Dispatcher

CH1Threshold
Monitor

CH2Threshold
Monitor

Balance
Deviation

Meter

Dispatch
Control

Load from CH1

Load from CH2

Force back
signal to CH1

Force back
signal to CH2

Force back
activity signals

CH1 dispatched
packet details

CH2 dispatched
packet details

Dispatch
decision

Dispatch
signal

Dispatch
signal

CH1 Packet Queue

CH2 Packet Queue

Load Balancing
System

ISRJournals and Publications Page 379

International Journal of Advanced Research in

 Computer Science Engineering and Information Technology

Volume: 3 Issue: 1 26-Jun-2014,ISSN_NO: 2321-3337

Balance Deviation Meter: The balance deviation meter stores a history of events from which it

makes its decision as to which channel packet is next to be dispatched. The channel to dispatch

the first packet can be selected in random or in some priority. Then the incoming packets are

dispatched according to the set load balance deviation.It may take in account the amount of

traffic in each channel by considering the queue size and the number of force backs encountered

in that queue from the respective threshold monitor.E.g., consider the set load balance deviation

to be 100 kB. This means that the load balancer balances the load between the allocated

channels with the tolerance of size 100 kb between the channels.

Channel 1

Channel 2

Common
Modem

Outflow
Load

Balancing
System

Bidirectional
Traffic

Balancing

Balanced
Traffic

outflow

CH1 Traffic
outflow

CH2 Traffic
outflow

Common
Traffic
inflow

Balanced CH2
Traffic inflow

Balanced CH1
Traffic inflow

Inflow
Load

Balancing
System

Comm. medium

7, MODES OF OPERATION

There are three modes of operation in dynamic load balancing allocation

Inflow traffic balancing: Each traffic outflow from each channel is given to the modem and it

is given to the load balancing system. The loads are dispatched from the queue and send it to the

channel where the load is minimum. Hence the traffic is reduced.

Outflow traffic balancing: The traffic outflow is initially given to the load balancing system

and the loads are dispatched from the queue and send it to the modem.

Bidirectional flow traffic balancing: The load balancing system is used in inflow traffic

balancing as well as outflow traffic balancing

ISRJournals and Publications Page 380

International Journal of Advanced Research in

 Computer Science Engineering and Information Technology

Volume: 3 Issue: 1 26-Jun-2014,ISSN_NO: 2321-3337

S. No Channel to

dispatch

packet

Packet

size

Cumulative load Load

Difference

(CH1–CH2)

Next channel to

dispatch packet

CH1 CH2

1. CH1 110 110 0 110 CH2

2. CH2 210 110 210 -100 CH1

3. CH1 90 200 210 -10 CH1

4. CH1 130 330 210 120 CH2

5. CH2 250 330 460 -140 CH1

6. CH1 160 490 460 30 CH1

CONCLUSION AND FUTURE ENHANCEMENTS

Our proposal strives to balance the loads of nodes and reduce the demanded movement cost as

much as possible, while taking advantage of physical network locality and node heterogeneity.

In the absence of representative real workloads (i.e., the distributions of file chunks in a large-

scale storage system) in the public domain, we have investigated the performance of our

proposal and compared it against competing algorithms through synthesized probabilistic

distributions of file chunks. The computer simulation results are encouraging, indicating that

our proposed algorithm performs very well.

ISRJournals and Publications Page 381

International Journal of Advanced Research in

 Computer Science Engineering and Information Technology

Volume: 3 Issue: 1 26-Jun-2014,ISSN_NO: 2321-3337

Our proposal is comparable to the centralized algorithm and dramatically outperforms the

competing distributed algorithm in terms of load imbalance factor, movement cost, and

algorithmic overhead.

REFERENCES

[1] S. Ajmani, D. Clarke, C.-H. Moh, and S. Richman, “ConChord: Cooperative SDSI

certificate storage and name resolution,” in Proc. 1st Int. Workshop Peer-to-Peer Systems,

Cambridge, MA, Mar. 2002.

[2] A. Bakker, E. Amade, G. Ballintijn, I. Kuz, P. Verkaik, W. I. van der, M. van Steen, and A.

Tanenbaum, “The globe distribution network,” in Proc. 2000 USENIX Annu. Conf. (FREENIX

Track), San Diego, CA, June 2000, pp. 141–152. STOICA et al.: CHORD: SCALABLE PEER-

TO-PEER LOOKUP PROTOCOL 31

[3] Y. Chen, J. Edler, A. Goldberg, A. Gottlieb, S. Sobti, and P. Yianilos, “A prototype

implementation of archival intermemory,” in Proc. 4th ACM Conf. Digital Libraries, Berkeley,

CA, Aug. 1999, pp. 28–37.

[4] I. Clarke, “A distributed decentralised information storage and retrievalsystem,” Master’s

thesis, Univ. Edinburgh, Edinburgh, U.K., 1999.

[5] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, “Freenet: A distributed anonymous

information storage and retrieval system,” in Proc. ICSI Workshop Design Issues in Anonymity

and Unobservability, Berkeley, CA, June 2000, [Online]. Available: http://freenet.sourceforge.

net.

[6] R. Cox, A. Muthitacharoen, and R. Morris, “Serving DNS using Chord,”in Proc. 1st Int.

Workshop Peer-to-Peer Systems, Cambridge, MA, Mar2002.

[7] F. Dabek, F. Kaashoek, D. R. Karger, R. Morris, and I. Stoica, “Wide-area cooperative

storage with CFS,” in Proc. ACM Symp. Operating Systems Principles, Banff, Canada, 2001,

pp. 202–215.

[8] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S.

Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo: Amazon’s Highly Available Key-

value Store,” in Proc 21st ACM Symp. Operating Systems Principles (SOSP’07), Oct. 2007, pp.

205–220.

[9] Gnutella. [Online]. Available: http://gnutella.wego.com/

ISRJournals and Publications Page 382

International Journal of Advanced Research in

 Computer Science Engineering and Information Technology

Volume: 3 Issue: 1 26-Jun-2014,ISSN_NO: 2321-3337

[10] J. Li, J. Jannotti, D. De Couto, D. R. Karger, and R. Morris, “A scalable

location service for geographic ad hoc routing,” in Proc. 6th ACM Int. Conf. Mobile Computing

and Networking, Boston, MA, Aug. 2000, pp. 120–130.

[11] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A scalable content-

addressable network,” in Proc. ACM SIGCOMM, San Diego, CA, Aug. 2001, pp. 161–172.

[12] A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed Object Location and Routing

for Large-Scale Peer-to-Peer Systems,” LNCS 2218, pp. 161–172, Nov. 2001.

[13] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger,M. F. Kaashoek,F. Dabek, and H.

Balakrishnan, “Chord: a Scalable Peer-to-Peer Lookup Protocol for Internet Applications,”

IEEE/ACM Trans. Netw., vol. 11, no. 1, pp. 17–21, Feb. 2003.

[14] J. Stribling, E. Sit, M. F. Kaashoek, J. Li, and R. Morris, “Don’t Give Up on Distributed

File Systems,” in Proc. 6th Int’l Workshop Peer-to-Peer Systems (IPTPS’07), Feb. 2007.

 [15] A Symmetric Load Balancing Algorithm with

 Performance guarantees with Distributed Hash Table by Hung-Chang Hsiao†, Che-Wei Chang

Powered by TCPDF (www.tcpdf.org)

ISRJournals and Publications Page 383

http://www.tcpdf.org

