
International Journal of Advanced Research in Computer Science Engineering and Information Technology

Volume: 6 Issue: 3 Dec,2016,ISSN_NO: 2321-3337 

 

Key-Value Pair Level Incremental
Processing in Big Data Environment

Karthikeyan S1 Dr.Manimegalai R2, Dr.Hamsapriya T3

1karthikeyan@psgitech.ac.in, 2mmegalai@yahoo.com, 3hamsapriya.t@gmail.com
1 Assistant Professor, PSG Institute of Technology and Applied Research, Coimbatore.

2Professor, Park College of Engineering and Technology, Coimbatore.
3Professor, PSG Institute of Technology and Applied Research, Coimbatore.

Abstract— A novel Incremental Processing method is
proposed for data analysis in order to keep the mining
results up-to-date. To reduce the running time of
refreshing the big data results, the proposed

workimplements a technique called i2Map Reduce
which is an extension of Map Reduce that supports
Fine Grain Incremental Processing for both One step

and Four iterative computation. i2MapReduce
performs key value pair level incremental processing
compared to the state-of- art Incoop, that uses task
level re computation. It supports not only one step
computation but also more sophisticated iterative
computation, which is widely used in data mining
applications, and incorporates a set of tale techniques
to reduce I/O overhead for accessing preserved fine-
grain computation states.

Index Terms—Bigdata,Hadoop,Hdfs,MapReduce,Hive.

INTRODUCTION

Before big data appear, database has become an important
processing platform because of the data processing
convenience. But when database is faced with non-relational
or large-scale data, there is a difficulty dealing with them. Big
data not only enhance the related computing services
technologies but also change the traditional mode of many
industries. Big data is the term for a collection of data sets
which are large and complex, it contain structured and
unstructured both type of data. Big data is data that exceeds
the processing capacity of conventional database systems and
it is used when data is too big, moves too fast, or doesn’t fit
the structures of database architectures. Data mining is a
technique for discovering interesting patterns as well as
descriptive, understandable models from large scale data.
Today huge amount of digital data is being accumulated in
many important areas, including e-commerce, social network,
finance, health care, education, and environment.  It has
become increasingly popular to mine such big data in order to
gain insights to help business decisions or to provide better
personalized, higher quality services. In recent years, a large
number of computing frameworks have been developed for
big data analysis. Among these frameworks,  Map Reduce
(with its open-source implementations, such as Hadoop) is

the most widely used in production because of its
simplicity, generality, and maturity. The main aim of the
project to focus on improving map reduce. In recent years
big data applications have become ubiquitous. In the big
data environment, the traditional data management
technology represented by relational database has been
unable to effectively manage these data. How to quickly
access big data represented by Hadoop has emerged. Many
big data applications have the characteristics of increment
and iteration. Big data processing tasks always run
repeatedly when the data changes very small. The
characteristics of data incremental change in big data
indicates that it can greatly improve performance by using
the incremental mode to process big data.

Big data is constantly evolving. As new data and updates
are being collected, the input data of a big data mining
algorithm will gradually change, and the computed results
will become stale and obsolete over time. In many
situations, it is desirable to periodically refresh the mining
computation in order to keep the mining results up-to-date.
Incremental processing   is a promising   approach to
refreshing mining results. Given the size of the input big
data, it is often very expensive to rerun the entire
computation from scratch. The core of Hadoop is a
distributed file system HDFS and a computing framework
MapReduce. Typically, when we process big data in
Hadoop platform. data is stored in the HDFS distributed file
system and we use MapReduce framework for processing.
The existing Hadoop big data management technology don't
consider the incremental feature of big data, as a result, it
has large processing cost and poor timelines, In order to
improve the processing efficiency of incremental big data,
distributed file system iHDFS which supports incremental
computing, providing basic guarantee for incremental
processing of big data This distributed file system iHDFS is
an extension to HDFS. The iHDFS reserves compatibility
with HDFS and provides the same interfaces and semantics
as HDFS. The main idea of iHDFS is to make the input data
of MapReduce, namely the data stored in HDFS, divided
into chunks based on content. Many Big data application
have characteristics of   increment and iteration. Big data
processing tasks always run repeatedly when the data
changes  very small. The characteristics of incremental
change data improve performance.

ISRJournals and Publications Page 1215



International Journal of Advanced Research in Computer Science Engineering and Information Technology

Volume: 6 Issue: 3 Dec,2016,ISSN_NO: 2321-3337 

 

The project has investigate the realization of this principle
in the context of the Map Reduce computing framework. A
number of previous studies have followed this principle and
designed new programming models to support incremental
processing. Unfortunately, the new programming models
(BigTable observers in Percolator, stateful translate opera-
tors in CBP, and timely dataflow paradigm in Naiad) are
drastically different from MapReduce, requiring pro
grammers to completely re-implement their algorithms.This
project implemented i2MapReduce by modifying Hadoop-
1.0.3 and evaluate i2MapReduce using a one-step algorithm
(A-Priori) and four iterative algorithms (PageRank, SSSP,
Kmeans, GIM-V) with diverse computation characteristics.

First, it provides a framework for programmers to explicitly
model iterative algorithms. Second, it proposes the concept of
persistent tasks to perform the iterative computation to avoid
repeatedly creating, destroying, and scheduling tasks. Third,
the input data are loaded to the persistent tasks once and do
not need to be shuffled between map and reduce. This can
significantly reduce the I/O and the network communication
overhead and the processing time. Fourth, it facilitates
asynchronous execution of tasks within the same iteration, to
accelerate the processing speed and they also proposed
iMapReduce that supports the implementation of iterative
algorithms under a large cluster environment.. The results
show a factor of ranging from 1.2 to 5 speedup can be

Experimental results on Amazon EC2 show significant achieved for these iterative algorithms. In addition, the data
performance improvements of i2MapReduce compared to
both plain and iterative Map Reduce performing re-
computation. For example, for the iterative Page Rank
computation with 10 percent data changed, i2 map reduce
improves the run  time of re-computation on plan map
reduce by an eight fold speedup.

RELATED WORK
In Existing various works are corresponds to this area
IncMR framework is proposed for incrementally processing
new data of a large data set, which takes state as implicit
input and combines it with new data. Map tasks are created
according to new splits instead of entire splits while reduce
tasks fetch their inputs including the state and the
intermediate results of new map tasks from designate nodes
or local nodes. Data locality is considered as one of the
main optimization means for job scheduling. It is
implemented based on Hadoop,   compatible with the
original MapReduce interfaces and transparent to users.
Experiments show that non-iterative algorithms running in
MapReduce framework can be migrated to IncMR directly
to get efficient incremental and continuous processing
without any modification. IncMR is competitive and in all
studied cases runs faster than that processing the entire data
set.In existing work puts focus on the transplantation of
parallel algorithms based on MapReduce model and

communication cost can be significantly reduced.

EXISTING SYSTEM
In most existing service reference systems, the data analysis is
performed in the task level analysis. This will take the entire
data into process and write the output data back in the disk
after completing the process. Disadvantages of existing system
is no intermediate data is saved in the disk and if the task fails
then it needs to start from the beginning again.

PROPOSED WORK

Due to some disadvantages in the current existing system, we
propose the new trend of system as below,

 In proposed model it will handle the map reduce in
incremental fashion.

 It can store the data intermediately.
 Data are stored in the local disk after each sub task.
 It ensure that the data is not lost if the process fails

also.
. 

The Intermediate data will be stored in the disk which can be
used later to start from those steps if needed. Data is more
stable. Accuracy of the task is improved and the data analysis
is not only performed in the task level analysis.

compatibility of non incremental and incremental SYSTEM ARCHITECTURE
processing. A parallel programming framework is
presented, which aims to be compatible with the original
MapReduce APIs so that programmers do not need to
rewrite the algorithms and it presents an incremental data
processing model which is compatible with the MapReduce
model and its runtime. It supports MapReduce-based
applications without any modification. One of the existing
work presents iMapReduce, a distributed framework that
supports iterative processing. iMapReduce allows users to
specify the iterative computation with the separated map
and reduce functions, and provides the support of automatic
iterative processing within a single job. More importantly,
iMapReduce significantly improves the performance of

Local Files

iterative implementations by reducing the overhead of
creating new MapReduce jobs repeatedly,eliminating the
shuffling of static data and allowing   asynchronous
execution of map tasks. They have implement an
iMapReduce prototype based on Apache Hadoop, and show
that iMapReduce can achieve up to 5 times speedup over
Hadoop for implementing iterative  algorithms and they.

HIVE HQL

ISRJournals and Publications Page 1216



International Journal of Advanced Research in Computer Science Engineering and Information Technology

Volume: 6 Issue: 3 Dec,2016,ISSN_NO: 2321-3337 

 

The Design Phase is where many potential solutions are
looked upon and the choices are narrowed down to determine
the most effective and efficient way to construct the solution.
The Design Phase answers the questions about "how" you will
build the best solution. Design phase focus on the
transformation of all requirements into detailed covering all
aspects of the system, Assessment and planning for security
risks and Approval to progress to the Development Phase. The
requirements identified in the Requirements Analysis Phase
are transformed into a System Design Document that
accurately describes the design of the system and that can be
used as an input to system development in the next phase

MODULES

 Setting up the hadoop Cluster
 Moving of datasets from local to hadoop
 Create the hive Meta Store
 Create Hive DDL for the data in HDFS.
 Hive Hql to perform the MR Analysis.

FINE-GRAIN INCREMENTAL PROCESSING

A vertex in the Map task represents an individual Map
function call instance on a pair of (K1; V 1). Each vertex in
the Reduce task represents an individual Reduce function call
instance on a group of (K2; ({V2}). MRBGraph edges are the
fine-grain states M that we would like to preserve for
incremental processing. An edge contains three pieces of
information: (i) the source Map instance, (ii) the destination
Reduce instance (as identified by K2), and (iii) the edge value
(i.e., V 2). Map input key K1 may not be unique,
i2MapReduce generates a globally unique Map key MK for
each Map instance. Therefore, i2MapReduce will preserve
(K2, MK, V 2) for each MRBGraph edge. For incremental
processing, we preserve the fine-grain MRBGraph edge states
Usually it’s consider latter because during incremental
processing original intermediate values can be obtained at the
Reduce side without any shuffling overhead. The engine
transfers the globally unique MK along with (K2; V2 )during
the shuffle phase. Then it saves the states (K2;MK;V2) in a
MRBGraph file at every Reduce task, Delta input.
i2MapReduce expects delta input data that contains the newly
inserted, deleted, or modified kv-pairs as the input to
incremental processing.Many incremental data acquisition or
incremental crawling techniques have been developed to
improve data collection performance.

Incremental map computation to obtain the delta MRBGraph.
The engine invokes the Map function for every record in the
delta input. For an insertion with ‘+’, its intermediate results
(K2;MK V2’)is represent newly inserted edges in the
MRBGraph. For a deletion with ‘-’, its intermediate results
indicate that the corresponding edges have been removed from
the MRBGraph. The engine replaces the V 20s of the deleted
MRBGraph edges with ‘-’. During the Map-Reduce shuffle
phase, the intermediate (K2;MK;V2)is  and (K2;MK;)‘_’is
with the same K2 will be grouped together. The delta
MRBGraph will contain only the changes to the MRBGraph
and sorted by the K2 order.

Incremental reduce computation. The engine merges the delta
MRBGraph and the preserved MRBGraph to obtain the
updated MRBGraph using the  Query algorithm . For each
(K2;MK ‘-’), the engine deletes the corresponding saved edge
state. For each (K2;MK;V2’), the engine first checks
duplicates, and inserts the new edge if no duplicate exists, or
else updates the old edge if duplicate exists. (Note that (K2,
MK) uniquely identifies a MRBGraph edge.) Since an update
in the Map input is represented as a deletion and an insertion,
any modification to the intermediate edge state (e.g., (2; 0; ‘*‘)
in the example) consists of a deletion (e.g., (2; 0;‘_’) followed
by an insertion (e.g., (2; 0; 0:6). For each affected K2, the
merged list of V 2 will be used as input to invoke the Reduce
function to generate the updated final results.

Fine-grain state retrieval and merging.
A MRBGraph file stores fine-grain intermediate states for a

Reduce task, a chunk corresponds to the input to a Reduce
instance, our design treats chunk as the basic unit, and always
reads, writes, and operates on entire chunks. Every record
represents   a change in the original (last preserved)
MRBGraph. There are two kinds of records. An edge insertion
record (in green color) contains a valid V 2 value; an edge
deletion record (in red color) contains a null value (as marked
by ‘_’). The merging of the delta MRBGraph with the
MRBGraph file in the MRBG-Store is essentially a join
operation using K2 as the join key. Since the size of the delta
MRBGraph is typically much smaller than the MRBGraph
file, it is wasteful to read the entire MRBGraph file. Therefore,
we construct an index for selective access to the MRBGraph
file: Given a K2, the index returns the chunk position in the
MRBGraph file. As only point lookup is required, we employ
a hash-based implementation for the index. The index is stored
in an index file and is preloaded into memory before Reduce
computation. We apply the index  nested loop  join for the
merging operation.It has been observe that the MapReduce
shuffling phase will sort the intermediate   keys. An
introduction to a read cache and a dynamic read window
technique for further optimization. A sequence of K2s, there
are two ways to read the corresponding chunks: (i) performing
an individual I/O operation for each chunk; or (ii) performing
a large I/O that covers all the required chunks. The former
may lead to frequent disk seeks, while the latter may result in
reading a lot of useless data.

CONCLUSION

The proposed strategy have described i2MapReduce, a
MapReduce-based framework for incremental big data

processing. i2 MapReduce combines a fine-grain incremental
engine, a general-purpose  iterative model, and a set of
effective techniques for incremental iterative computation.

Real-machine experiments show that i2 MapReduce can
significantly reduce the run time for refreshing big data
mining results compared to re-computation on both plain and

iterative MapReduce. This i2 will save the time by saving the
intermediate data in the disk and therefore when the operation
fails the previous process data will be in the disk and later it
can be used for processing.

ISRJournals and Publications Page 1217



International Journal of Advanced Research in Computer Science Engineering and Information Technology

Volume: 6 Issue: 3 Dec,2016,ISSN_NO: 2321-3337 

 

REFERENCES

1. D. Peng and F. Dabek, “Large-scale incremental
processing using distributed transactions and
notifications,” in Proc. 9th USENIX Conf.
Oper.Syst.Des.Implementation, 2010, pp. 115

2.    Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst,
“Haloop: Efficient iterative data processing on large
clusters,” in Proc. VLDB Endowment, 2010, vol. 3,
no. 1–2, pp. 285–296.

3. P. Bhatotia, A. Wieder, R. Rodrigues, U. A. Acar,
and R. Pasquin, “Incoop: Mapreduce for incremental
computations,” in Proc. 2nd ACM Symp. Cloud
Comput., 2011, pp. 7:1–7:14.

4.    C. Yan, X. Yang, Z. Yu, M. Li, and X. Li, “IncMR:
Incremental data processing based on mapreduce,” in
Proc. IEEE 5th Int. Conf. Cloud Comput., 2012,
pp.pp. 534–541.

5.    Y. Zhang, Q. Gao, L. Gao, and C. Wang,
“imapreduce: A distributed computing framework for
iterative computation,” J. Grid Comput., vol. 10, no.
1, pp. 47–68, 2012.

6. Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A.
Kyrola, and J. M. Hellerstein, “Distributed graphlab:
A framework for machine learning and data mining
in the cloud,” in Proc. VLDB Endowment, 2012, vol.
5, no. 8, pp. 716–727.

7. T. Jorg, R. Parvizi, H. Yong, and S. Dessloch,
“Incremental recomputations in mapreduce,” in Proc.
3rd Int. Workshop Cloud Data Manage., 2011, pp. 7–
14.

8. J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H.
Bae, J. Qiu, and G. Fox, “Twister: A runtime for
iterative mapreduce,”  in Proc. 19th ACM Symp.
High Performance Distributed Comput., 2010, pp.
810–818.

9. S. R. Mihaylov, Z. G. Ives, and S. Guha, “Rex:
Recursive, deltabased data-centric computation,” in
Proc. VLDB Endowment, 2012, vol. 5, no. 11, pp.
1280–1291.

10.  R. Power and J. Li, “Piccolo: Building fast,
distributed programs partitioned tables,” in Proc. 9th
USENIX Conf. Oper. Syst. Des. Implementation,
2010, pp. 1–14.

11. G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski, “Pregel: A
system for large-scale graph processing,” in Proc.
ACM SIGMOD Int. Conf. Manage. Data, 2010, pp.
135–146.

12.  S. Ewen, K. Tzoumas, M. Kaufmann, and V. Markl,
“Spinning fast iterative data flows,” in Proc. VLDB
Endowment, 2012, vol. 5,no. 11, pp. 1268–1279.

13.  S. Brin, and L. Page, “The anatomy of a large-scale
hypertextual web search engine,” Comput. Netw.
ISDN Syst., vol. 30, no. 1–7, pp. 107–117, Apr.
1998.

14. J. Dean and S. Ghemawat, “Mapreduce: Simplified
data processing on large clusters,” in Proc. 6th Conf.
Symp. Opear. Syst. Des. Implementation, 2004, p.
10.

15. Y. Zhang, Q. Gao, L. Gao, and C. Wang
“Acceleratelarge-scale iterative computation through
asynchronous accumulative updates,” in Proc. 3rd
Workshop Sci. Cloud Comput. Date, 2012, pp. 13–
22.

16.  Y. Zhang, Q. Gao, L. Gao, and C. Wang, “Priter: A
distributed framework for prioritized iterative
computations,” in Proc. 2nd ACM Symp. Cloud
Comput., 2011, pp. 13:1–13:14.

ISRJournals and Publications Page 1218



International Journal of Advanced Research in Computer Science Engineering and Information Technology

Volume: 6 Issue: 3 Dec,2016,ISSN_NO: 2321-3337 

 

Powered by TCPDF (www.tcpdf.org)

ISRJournals and Publications Page 1219

http://www.tcpdf.org

