
International Journal of Advanced Research in Computer Science Engineering and Information Technology

Volume: 6 Issue: 3 Dec,2016,ISSN_NO: 2321-3337

 First M.MD.Shahbaz Hussain, Second R.Vidhya

Abstract— Job scheduling based on size with aging has been recognized as an effective approach to

guarantee near optimal system response times. HFSP scheduler introducing this technique to a real,

multi-server, complex and widely used system such as Hadoop. Job scheduling according to size requires a

priori job size information, which is not available in Hadoop and estimates it on-line during job execution.

Size based scheduling in HFSP adopts the idea of giving priority to small jobs that they will not be slowed

down by large ones. HFSP is a size based and preemptive scheduler for Hadoop. HFSP is largely fault

tolerant and tolerant to job size estimation errors. Here Scheduling decisions use the concept of virtual time

and cluster resources are focused on jobs according to their priority, computed through aging. This

protocol never faces Starvation Problem for small and large jobs.

Key words: MapReduce, Performance, Data Analysis, Scheduling, Master Slave, SRPT, FCFS, Process

Sharing.

I. INTRODUCTION

 Hadoop is a Java-based programming framework and free that supports the processing

of large data sets in a Parallel and distributed computing environment. It makes Use of

the commodity hardware Hadoop is Highly Scalable and Fault Tolerant. Hadoop runs in

cluster and eliminates the use of a Super computer. Hadoop is the widely used big data

processing engine with a simple master slave setup.

Big Data in most companies are processed by Hadoop by submitting the jobs to Master.

The Master distributes the job to its cluster and process map and reduce tasks

sequentially. But now a days the growing data need and the and competition between

Service Providers leads to the increased submission of jobs to the Master. This

Concurrent job submission on Hadoop forces us to do Scheduling on Hadoop Cluster so

that the response time will be acceptable for each job.

 In this work, we mainly focus the problem of job scheduling, that is how to allocate the

available resources of a particular cluster to the number of concurrent jobs according to

their specific resources, and focus on Hadoop, the most widely adopted open-source

implementation of MapReduce. Currently, there are two main strategies used to schedule

jobs. The first strategy is to divide the cluster resources into equal among all running

jobs. A remarkable example of this type strategy is Hadoop Fair Scheduler .While this

type of method preserves fairness and consistency among jobs, when the system is

overloaded, it may increase the response time of jobs. The second type strategy is to

serve one job at a time, thus avoiding the resource splitting. This is similar example to

First-In-First-Out (FIFO) strategy, in which the job that arrived first is served first. The

problem with this strategy is that, the job size is not given importance and blind to size,

whatever the available scheduling choices available may lead inevitably to poor

performance and inconsistency: as small jobs are possible to find large jobs in queue,

thus they may incur in response times that are not proportionate to their size. As a

consequence, the interaction is difficult between them to obtain. Both strategies have

drawbacks that prevent them from using it directly in production without taking

precautions. Commonly, a manual configuration of both the scheduler and the

parameters of system are required to overcome such drawbacks. This causes the manual

setup of a number of “pools” to divide all the resources in to different job categories, and

fine-tuning of parameters governing the resource allocation. This process is error prone,

and not possible to adapt easily to the change in workload composition and in cluster

dimensions. In addition to that it is often the case for clusters to get over-dimension. This

Job Scheduling based on Size to Hadoop

ISRJournals and Publications Page 1169

International Journal of Advanced Research in Computer Science Engineering and Information Technology

Volume: 6 Issue: 3 Dec,2016,ISSN_NO: 2321-3337

simplifies resource allocation but has the disadvantage due to its costly deployments and

the maintenance for resources which are left unused.

 We present the new proposed design of a new protocol for scheduling that caters both

to a fair and efficient utilization of cluster resources, while trying to achieve shorter

response times. Our solution implements a size-based, preemptive scheduling discipline.

Our scheduler allocates resources of cluster such that job size information is inferred

while the job makes progress towards its own completion. Scheduling decisions use the

method called virtual time and resources of cluster which are focused on priority of jobs

and computed through aging. This ensures that neither small nor large jobs suffer from

starvation. The output of our work progresses as a full-fledged scheduler implementation

that integrates seamlessly in Hadoop named HFSP. Size based scheduling in HFSP

adopts the idea of giving priority to small jobs so that they will not get slowed down by

large jobs The Shortest Remaining Processing Time (SRPT) policy, which prioritizes

jobs that need the least amount of work to complete i.e., the one that minimizes the mean

response time (or sojourn time), that is the time that is passed between the submission of

job and the time of completion of job. We Extend HFSP to pause jobs with Higher SRPT

and allow other waiting jobs in Queue based on FCFS.

 II. PROBLEM STATEMENT

 In this section, we describe the problem the problem with this strategy is that, job size

is not considered and blindly followed, the scheduling choices which are available lead

inevitably to poor performance and inconsistency, while in PS resources are divided

equally so that each active job keeps progressing. In loaded systems, these disciplines

have severe shortcomings: in FCFS, large running jobs may leads to delay significantly

the smaller ones; in Process Sharing, each additional job delays the completion of all the

others. Both FCFS and Process sharing strategies have their own drawbacks that prevent

them from being used in production without precautions.

III. USER CLASSES AND CHARACTERISTICS

The contribution of our work can be summarized as follows

A. Big Data and Environment

 Huge Collection of data is retrieved from open source datasets that are publicly

available from major Application Providers like Amazon. Big Data Schemas were

analyzed and a Working Rule of the Schema is determined. The CSV (Comma separated

values) and TSV (Tab Separated Values) files are Stored in HDFS (Highly Distributed

File System) and were read through Master and manipulated using Java API that itself

developed by us which is developer friendly, light weighted and easily modifiable.

B. Running a Batch Job through FCFS

 A batch job is a backend job running in Hadoop clusters and also called as long

running jobs as it is scheduled to process bulk data so that the application would makes

use of the results produced for updating. Sample jobs are submitted to Hadoop master

and Hadoop master will run the jobs based on a well-known technique called First come

first serve manner (FCFS).Parallel execution of job is done by Hadoop cluster and the

results are shown through a well-known Framework called Map Reduce. The Mapper

task is done first in slave nodes and reduce task will be done in Master to throw the

output.

C. Size based Scheduling on Concurrent jobs

 Here n number of jobs are submitted to the Hadoop Master and Master will schedule

the jobs based on FCFS and PS in a hybrid way. The Capacity of cluster will be analyzed

ISRJournals and Publications Page 1170

International Journal of Advanced Research in Computer Science Engineering and Information Technology

Volume: 6 Issue: 3 Dec,2016,ISSN_NO: 2321-3337

so as to share resources between concurrent jobs arriving to Master. A threshold will be

maintained to balance load in slaves and Resource scheduling will not be done further if

limit is reached. The Arriving jobs will put in queue until resource gets free in cluster.

D. Extending HFSP for job mistreatment ie.Starvation

 As jobs may find long waiting time in queue, we extend our hybrid Approach which

clubs FCFS and PS to put running jobs on hold for some time, if the particular job has

high Shortest Remaining Processing Time (SRPT).Depending upon aging of the waiting

jobs and SRPT the long running jobs may be put on hold and the waiting jobs which have

high priority will be executed for a while and constant evaluated for SRPT for new jobs

to arrive for execution. Our Proposed methodology shows high throughput in job

completion.

E. Traditional Scheduling

 First Come First Serve (FCFS) and Processor Sharing (PS) are arguably the two most

simple and ubiquitous scheduling methods in use in many of systems; for instance, FIFO

and Fair are two schedulers for Hadoop, the first inspired by FCFS method and the

second by PS method . In FCFS, jobs are scheduled in the order of their submission,

while in PS resources are divided equally among all, so that the job which is active keeps

progressing. In loaded systems, these types of mentioned process have severe

shortcomings that is one case is in FCFS, large running jobs can delay significantly small

ones; in PS, job delays are unpredictable and this additional delays of jobs affects the job

completion of all the others. In order to improve the performance of the system in terms

of delay, it is important to mind the size of jobs. Job scheduling based on size adopts the

idea of giving priority to small jobs.

F. Hadoop Fair Sojourn Protocol

 The Hadoop Fair Sojourn Protocol (HFSP) is a Job scheduling based on size with

aging for Hadoop. Implementing HFSP raise number of challenges: a few of them come

from MapReduce itself and the fact that a job is composed by tasks – while others come

from the scheduler which is a size based in a context where the size of the jobs is not

known a priori. In this section we describe the challenges which has to face and the

proposed solutions. Jobs: In MapReduce, jobs are scheduled according to the of tasks

which it handles, and they consist of two phases, called MAP and REDUCE. We

evaluate the sizes of jobs by executing the subset of tasks for each job; however,

REDUCE tasks can be launched only after the MAP phase is getting complete. Our

scheduler thus divides the job logically in to two phases and treats them independent and

individually so the scheduler assumes the job as consisting of two parts with two

different sizes, one for the MAP and the other for the REDUCE phase. When a resource

is provided available for scheduling the MAP (resp. REDUCE) task, the scheduler sorts

and evaluates jobs according to their specific virtual MAP (resp. REDUCE) sizes, and

provides resources to the job with smallest size for that phase.

G. The Aging module

 The aging module takes as input the estimated sizes to compute virtual sizes. The use

of virtual sizes is a technique applied in many practical implementations of well-known

schedulers it consists in keeping track of the amount of the remaining work for each job

phase in a virtual “fair” system, and update it every time the scheduler is called. The

output is that, although if the job not receive resources and thus its real size does not

decrease, in the virtual system the job virtual size slowly decreases with time.

ISRJournals and Publications Page 1171

International Journal of Advanced Research in Computer Science Engineering and Information Technology

Volume: 6 Issue: 3 Dec,2016,ISSN_NO: 2321-3337

H. Scheduling Policy

 In this section we describe how the estimation and the aging modules coexist to create

a Hadoop scheduler that strives to be both efficient and fair.

 Job Submission: Figure 1 shows the lifetime of a job in HFSP, from its submission to

its completion and removal from the job queue. When a job is submitted, for each phase

of the job, the scheduler asks to the estimation module if that phase is tiny. If the answer

is affirmative, the scheduler assigns Sf = 0, meaning that the job must be scheduled as

soon as possible. Otherwise, the scheduler starts the training stage and sets the virtual

time to Si which is an initial size given by the module of estimator. Periodically, the

scheduler asks to the estimation module if it has completed its training stage, and, if the

answer is positive, it notifies the aging module to update the virtual size of that job and

removes the job from the training stage.

 Yes No

 When Job Completes

 And Job’s Virtual

 Time is 0

Fig. 1: Job lifetime in HFSP

Priority to the Training Stage

 The training stage is important because, as discussed in Section III-A, the initial size

Si is imprecise, compared to the final size Sf. Completing the training stage as soon as

possible is fundamental for an efficient scheduling policy. There are two strategies that

are used by the scheduler to speed up the training stage: the first strategy is to set a low

number of training tasks t, as discussed in Section III-A; the second strategy is to give

priority to the training tasks across jobs – up to a threshold of T 2 [0; Tmax] where Tmax

is the total number of resources in the cluster. Such threshold avoids starvation of

“regular” jobs in case of a busty job arrival pattern. When a resource is free and there are

jobs in the training stage, the scheduler assigns the resource to a training task

independently from its job position in the job queue. In other words, training tasks have

the highest priority. Conversely, after a job has received enough resources for its training

tasks, it can still obtain resources by competing with other jobs in the queue.

Virtual Time Update

 When a job phase completes its training stage, the scheduler asks to the estimation

module the final size Sf and notifies the aging module to update the virtual size

accordingly. This operation can potentially change the order of the job execution. The

Job Submitted

Is tiny?

Set Job’s Virtual Size = Sf

Assign Final Size Sf

Add Job to Virtual

Cluster with Virtual

Size = Si

Assign Initial Size Si

Job Removed

Job Enters Training

Stage

ISRJournals and Publications Page 1172

International Journal of Advanced Research in Computer Science Engineering and Information Technology

Volume: 6 Issue: 3 Dec,2016,ISSN_NO: 2321-3337

scheduler should consider the new priority and grant resources to that job, if such job is

the smallest one in the queue. Unfortunately, in Hadoop MapReduce the procedure to

free resources that are used by the tasks, also known as task preemption, can waste.

Work. The default strategy used by HFSP is to wait for the resources to be released by the

working tasks. Section III-E describes the preemption strategies implemented in HFSP

and their implications.

IV. ALGORITHMS USED

Algorithm 1 HFSP resource scheduling for a job phase.

 Function ASSIGNPHASETASKS (resources)

 For all Resources 2 resources do

 If 9 (Job in training stage) and Tcurr < T then

 Job Select job to train with smallest initial

 Virtual Size

 ASSIGN(s, job)

 Icurr Icurr + 1

 Else

 Job select job with smallest virtual time

 Assign(s, job)

 End if

 End for

 End function

 Function ASSIGN (resource, job)

 If task is a training task then

 Icurr Icurr

 End if

 End function

 Scheduling Algorithm

 HFSP Scheduling which is invoked every time a MapReduce Slave Claims work to do

the MapReduce master-behaves as described by algorithm 1. The Main function that is

AssignPhaseTasks is responsible for assigning tasks for a certain phase. First it checks if

there are jobs in training stage for that phase. IF there are any, and the number of current

resources used for training tasks T] is smaller or equal than T, the scheduler assigns the

resources to the first training task of the smallest job. Otherwise, the scheduler assigns

the resource to the job with the smallest virtual time. When a task finishes its work, the

procedure release resource is called. If the task is a training task, then the number Tcurr of

training slots in use is decreased by one.

SRPT Algorithm Calculation

 Function CALCSRPT (Jobid, Result)

 Take input of jobid as SRPT.Map.Get (jobid)

 Assign noOfRcrds to stk.nextToken

 Assign floatvalue to (noOfRcrds)/ (totCount)

 Assign Calculate percent to (floatvalue * 1000)

 If SRPTControlMap.Size is greater than 1

 While SRPTCalMap.size is greater than 2

 Create Thread and sleep for 1sec

 End while

ISRJournals and Publications Page 1173

International Journal of Advanced Research in Computer Science Engineering and Information Technology

Volume: 6 Issue: 3 Dec,2016,ISSN_NO: 2321-3337

 Create Array List Arr [Jid] and input all jobid’ s

 Sort Array List Arr [Jid]

 Assign ii to SRPTCalcMap.KeySet

 While ii.hasNext

 Assign Mapkey to ii.Next

 Assign val to SRPTCalcMap.get (Mapkey)

 If Bigjobval equals val

 Return Val as Bigjob val

 End While

 End if

 End Function

 Here Jobid is the ids of Jobs and Result is a String variable. SRPTMap.Get returns id’s

of jobs, then the Number of Records and Percent are calculated. If

SRPTControlMap.size is greater than 1 then it checks for SRPTCalMap.size is greater

than 2 and then create a thread which sleeps for 1 sec and create an Array List which

should be sorted with jobid’ s. Get MapKey and compare with BigJobVal.

 PS/FCFS

Fig. 2: Architecture of Job Scheduling

 V. HOW WE DEAL

 The new proposed design of a new protocol for scheduling that caters both to a fair and

efficient utilization of cluster resources, while trying to achieve shorter response times.

Our solution implements a size-based, preemptive scheduling discipline. Here Admin is

the superior authority to submit jobs to Hybrid Scheduler. Whatever the jobs are present,

it collects and submits the Batch jobs and send those to Hybrid Scheduler. Hybrid

Scheduler sends all batch jobs to FCFS Queue where it follows its own policy which is

not at all related to Hybrid Scheduler. In FCFS Queue whatever the batch job arrives first

that is submitted to Master. Master is linked to all its available Slaves with in its

environment. Master follows Process Sharing policy where it shares resources to all its

freely available resources. It counts the time of each resource processed in slave.

ADMIN

Batch Job

Hybrid Scheduler FCFS Queue

SRPT

(Longest)

Master

HDFS

Slave 1

Slave 2

Slave 3

Slave 4

Slave n

ISRJournals and Publications Page 1174

International Journal of Advanced Research in Computer Science Engineering and Information Technology

Volume: 6 Issue: 3 Dec,2016,ISSN_NO: 2321-3337

Whenever the slave crosses the estimated time then that job will be preempted and send

to SRPT Longest queue which in turn submits to FCFS Queue whenever the FCFS

Queue reduces its size by 1. Our scheduler allocates resources of cluster such that job

size information is inferred while the job makes progress towards its own completion.

Scheduling decisions use the concept of virtual time and cluster resources are focused on

priority of jobs and computed through aging. This ensures that neither small nor large

jobs suffer from starvation. The output of our work progresses as a full-fledged scheduler

implementation that integrates seamlessly in Hadoop named HFSP. Size based

scheduling in HFSP adopts the idea of giving priority to small jobs so that they will not

get slowed down by large jobs The Shortest Remaining Processing Time (SRPT) policy,

which prioritizes jobs that need the least amount of work to complete i.e., the one that

minimizes the mean response time (or sojourn time), that is the time which is passed

between the submission of job and its time of completion. We Extend HFSP to pause

jobs with Higher SRPT and allow other waiting jobs in Queue based on FCFS

 VI. CONCLUSIONS

 Resource allocation plays an increasingly important role in current Hadoop clusters,

as modern data analytics and workloads are becoming more complex and heterogeneous.

Our work was motivated by the increasing demand for system responsiveness, driven by

both interactive data analysis tasks and long-running batch processing jobs, as well as for

a fair and efficient allocation of system resources.

Alas, system responsiveness and fairness requirements have been traditionally at odds:

a scheduling discipline that would satisfy one, had to sacrifice the other. For example, in

our work we argued that the default scheduling mechanism used in typical Hadoop

deployments, the Fair scheduler, achieves fairness but trades on system response times.

Only a tedious, manual process involving an expert administrator could miti-gate the

shortfalls of a processor sharing-like discipline, albeit for a rather static workload

composition.

In this paper we presented based on the idea of job scheduling based on size. Here the

full-fledged scheduler that is known as HFSP(Hadoop Fair Sojourn Protocol), which

implements a job scheduling based on size that satisfies system fairness and

responsiveness requirements.

Our work raised many challenges

Evaluating jobs and their sizes on-line without wasting or deviating resources,

avoiding job starvation for all kinds of jobs that is both small and large jobs, and

guaranteeing shorter response times of jobs despite estimation errors were the most

noteworthy. HFSP uses a practical design: estimation of size trades, starvation is largely

alleviated and accuracy for speed and starvation by introducing the mechanisms of

virtual time and aging.

A large part of this article was dedicated to a thorough experimental campaign to

evaluate the benefits of HFSP when compared to the default Fair scheduler in Hadoop.

We defined several realistic workloads that are representative of typical uses of an

Hadoop cluster, and proceeded with a comparative analysis using our deployment,

configured according to current best practices. Our experiments, that amount to more

than 1500 real jobs, indicated that HFSP systematically – and in some cases, by orders of

magnitude – outperformed the Fair scheduler, both with respect to system response times

and fairness properties.

ISRJournals and Publications Page 1175

International Journal of Advanced Research in Computer Science Engineering and Information Technology

Volume: 6 Issue: 3 Dec,2016,ISSN_NO: 2321-3337

 VII. FUTURE ENHANCEMENTS

 Currently, we are extending HFSP such that it can use recent job preemption

primitives, a necessary condition to allow even faster response times; moreover, we will

consolidate our codebase and contribute it to the Hadoop community, casting HFSP to

work for modern frameworks such as YARN and Mesos.

REFERENCES

1. Apache, “Hadoop: Open source implementation of MapReduce,” http:

//hadoop.apache.org/.

2. J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large

clusters,” in Proc. of USENIX OSDI, 2004.

3. Apache, “Spark,” http://spark.apache.org/.

4. M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S.

Shenker, and I. Stoica, “Resilient distributed datasets: A fault-tolerant abstraction for

in-memory cluster computing,” in Proceedings of the 9th USENIX Conference on

Networked Systems Design and Implementation, 2012, pp. 2–2.

5. Microsoft, “The naiad system,” https://github.com/ MicrosoftResearchSVC/naiad.

6. D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi, “Naiad: A

timely dataflow system,” in Proceedings of the 24th ACM Symposium on Operating

Systems Principles, 2013, pp. 439– 455.

7. Y. Chen, S. Alspaugh, and R. Katz, “Interactive query processing in big data systems:

A cross-industry study of MapReduce workloads,” in Proc. of VLDB, 2012.

8. K. Ren et al., “Hadoop’s adolescence: An analysis of Hadoop usage in scientific

workloads,” in Proc. of VLDB, 2013.

9. G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Effective straggler

mitigation: Attack of the clones.” in NSDI, vol. 13, 2013.

10. Apache, “Oozie Workflow Scheduler,” http://oozie.apache.org/.

11. Katarina Grolinger, Michael Hayes, Wilson A.Higashino, “Challenges for

MapReduce in Big Data”.

12. Matei Zaharia, Mosharaf Chowdary, Tathagata Das, Ankur, Scott Shenker,
“Resilent Disturned Datasets: A Fault-Tolerant , In-Memory Cluster

Computing”.
13. Kai Ren, YongChul Kwon “Hadoop’s Adolscence”

14. Ganesh Ananthanarayanan, Ali Ghodsil, Scott shenker , Ion Stoical “Effective Straggler

Mitigation : Attack of Clones”

15. Jeffrey Dean and Sanjay Ghemawat “MapReduce: Simplified Data Processing on Large Clusters”

ISRJournals and Publications Page 1176

International Journal of Advanced Research in Computer Science Engineering and Information Technology

Volume: 6 Issue: 3 Dec,2016,ISSN_NO: 2321-3337

Powered by TCPDF (www.tcpdf.org)

ISRJournals and Publications Page 1177

http://www.tcpdf.org

