
International Journal of Advanced Research in

 Computer Science Engineering and Information Technology

Volume: 3 Issue: 1 26-Jun-2014,ISSN_NO: 2321-3337

 1

Intrusion detection system using actuator

nodes In ITIS

H.Keerthana1, Janani Rajendran2, D.Abirami3,

1,2,3Student, 4Assistant Professor, Department of Information Technology

R.M.K Engineering College

ABSTRACT—An embedded monitoring device to deal with the heterogeneity of devices and

software systems requires a flexible solution that can lower complexity and decrease development,

deployment and system maintenance costs is presented. Service-Oriented Architecture (SOA) has

proven successful in leveraging these costs and it is seen as enabling technology for the development

of enterprise systems. Applying SOA to deeply constrained devices such as sensor nodes is still an

open research problem. This paper takes a dim-ferment approach—deploying interoperable Simple

Object Access Protocol (SOAP)-based web services directly on the nodes and not using gateways.

This strategy provides for easy integration with legacy IT systems and supports heterogeneity at the

lowest level. Twofold analysis of the related overhead, which is the main challenge of this solution, is

performed; Quantify action of resource consumption as well as techniques to mitigate it are

presented, along with latency measurements showing the impact of different parts of the system on

system performance. A proof-of-concept application using Mulle—a resource-constrained sensor

plat-form—is also presented.

Index Terms— Energy Aware Routing protocol, service-oriented architecture (SOA), simple

object access protocol (SOAP), web services, WSN.

I. INTRODUCTION

The ability of embedded devices, networked to apply deeply constrained devices to monitor and
control various physical parameters of the en-ironmen as well as communicate the data over the
Internet makes them a foreseeable source of innovation in many fields: from factory automation to use
in smart homes and healthcare.

The advantages of enterprise systems and services integration with devices are evident from the

perspective of business process synergy; many challenges still prevent widespread integration of

sensor nodes into Manufacturing Execution Sys-teems (MES), Enterprise Resource Planning (ERP),

accounting and distribution systems. More details regarding the opportunities and challenges of

applying Wireless Sensor and Actuator Networks (WSANs) in industrial environment are presented in

[1], as well as in the work of Willig on wireless industrial com-medications [2].
A flexible solution that can lower complexity and decrease development, deployment and system

maintenance costs is required for dealing with the heterogeneity of devices and software systems.

Service-Oriented Architecture (SOA) has proven successful in leveraging these costs and it is seen as

enabling technology for the development of enterprise systems in in-doctrinal domain [3]. Moreover,

research analysis has shown its applicability for embedded systems development [4]. The prototype

systems implemented within the European project SIRENA [5] as well as some commercial products

that provide support for Devices Profile for Web Services standard [6] further prove the applicability

of the SOA concept in the embedded domain. However, applying SOA to deeply constrained devices

ISRJournals and Publications Page 375

International Journal of Advanced Research in

 Computer Science Engineering and Information Technology

Volume: 3 Issue: 1 26-Jun-2014,ISSN_NO: 2321-3337

such as sensor nodes is still an open research problem due to unacceptable overhead. Some of the

proposed solutions are based on modifications of the SOA protocols that simplify the implementation

and lower the resource requirements [7]. However, the majority of research efforts have been directed

towards using middleware software running on more capable devices or gateways as suggested by

Wolff et al. in [8] or in the work of Bosman et al. [9]. This middleware is responsible for exposing the

functionality of the whole sensor network as services using standard SOA technology. In this way,

communication within the network is still based on specialized, proprietary protocols. This approach

has the benefit of leaving the resource-intensive tasks related to standard service implementation to

the gateway, but also has some drawbacks such as a single point of failure, an inability to support

heterogeneity on the node level [10], etc.
There are no studies investigating the applicability of deploying fully interoperable and compliant

ser-vices, such as those described in WS- I Basic Profile 1.0, directly on the sensor nodes although the

node -level service implementations have al-ready been proposed. This is due to the general

perception that the use of XML-based services on highly constrained sensor nodes is inapplicable or

even impossible.[11]. The higher overhead, in terms of power consumption, latency, related to

serialization, transmit-ting and parsing of verbose XML messages is undisputed, and has in fact been

well studied by Groba et al. [12], where empirical data that quantifies the overhead of web services on

em-bedded devices is presented. Especially challenging are the high memory requirements resulting

from the need for large buffers used to accommodate the XML documents.

Fig. 1. Sensor nodes are integrated with enterprise systems using standard Fig. 2. The SOCRADES

cross-layer approach. SOAP-based web services.
In this paper, we present few techniques for improving efficiency that allow us to deploy standard

SOAP web services on resource-constrained sensor nodes. These techniques are implemented in a

proof-of-concept application that connects sensor nodes to an enterprise application. The architecture

of the experimental setup is shown in Fig. 1. Among others, we applied sensor data aggregation for

reducing the transmission time and active mode intervals of the nodes, and hence increasing battery

life. As this technique is not applicable in general case a real-world scenario which allows for such

aggregation is also presented. In [13], Lee et al. used similar approach for industrial monitoring

application.
The structure for the remaining paper is as follows. We pro-vide a motivation for our work in

Section II. Section III summarizes the related work in the area and presents some of the technologies

used. Section IV goes into details about the problems related to the use of SOA in WSAN. Section V

presents our sample application together with performance measurements. In Section VI, we give the

ISRJournals and Publications Page 376

International Journal of Advanced Research in

 Computer Science Engineering and Information Technology

Volume: 3 Issue: 1 26-Jun-2014,ISSN_NO: 2321-3337

possible improvements and extensions to our work, and Section VII concludes this paper.

II. MOTIVATION

The global competition pushed by the manufacturing enterprises, are seeking ways to increase their

responsiveness to the market demands on a real-time scale. At the same time, the costs for

maintaining the process flows evolution or modification are substantial due to the semiautomatic, or

even error prone manual, configurations involved. A recent study by Candido et al. proposed an

architecture that supports the device and process lifecycle evolution based on SOA and Evolvable

Production Systems (EPS) [15]. As part of this architecture, the devices have SOA interfaces that

allow high-level business applications to interact with them without any intermediary protocol

gateways—a concept also. Suggested in [16]. The support for cross-layer integration between the

shop floor and enterprise systems was also a main objective for the SOCRADES project [17].

As an outcome of this project, architecture for vertical integration based on the SOA approach

was proposed, where the ERP and MES systems together with shop floor devices are integrated using

web services. Kalogeras et al. presented similar architecture with emphasis on the use of web services,

workflows, and ontolo-gies [18]. A diagram from the SOCRADES Roadmap shown in Fig. 2,

represents the concept of applying SOA approach for vertical inter-enterprise integration. As depicted,

the resource constrained devices, including wireless sensors and actuators, are exposed to the SOA

interface through service gateways or mediators. The work presented in this article is an extension to

the aforementioned SOA architecture aiming at deploying the service interface provided by the

gateways directly on the wireless nodes. This is made possible due to the advancement in embedded

systems hardware but also the application of re-source-aware implementation techniques.

III. BACKGROUND AND RELATED WORK

The usage of well- defined and self-contained function calls between distributed nodes independent

of the location and platform of the parties involved is denoted by SOA. It also implies that

interoperable network protocols for communicating service requests and responses are available.

Although many challenges still remain, there are different approaches for providing low layer

(physical and data-link) integration of wireless networks in an industrial environment [19], [20].

In this work, we focus on providing application layer integration with the use of an access point for

the data-link layer integration and TCP/IP stack on the network and transport layers. There are many

service technologies that are built upon the SOA approach: CORBA, UPnP, OPC-UA, Jini, and

different flavors of web service technology (SOAP-based, RESTful [21], etc.).
The web services conforming to the Web Services Description Language (WSDL) specification are

designed to be application- and transport protocol- agnostic, which leads to compatibility issues.

Services in enterprise systems mostly conform to WS-I Basic Profile 1.0, while Devices Profile for

Web Services is used

For that reason, different web service profiles are specified to leverage the

diversity of network protocols used and to adapt the specifications to a particular

application do-main. 3

ISRJournals and Publications Page 377

International Journal of Advanced Research in

 Computer Science Engineering and Information Technology

Volume: 3 Issue: 1 26-Jun-2014,ISSN_NO: 2321-3337

to define a set of protocols to enable plug-and-play behavior for embedded networked devices. Both
profiles rely on SOAP as an application layer protocol for serialization of service requests and
responses.

Benefits and disadvantages of the aforementioned service technologies applied to different

applications are already being studied by researchers (e.g., [5]); thus, a comparison of them is not

included in this paper. The analysis performed in re-search projects such as SIRENA, SOCRADES

and within the research program ITEA gives priority to SOAP -based web ser-vices in which the

devices are integrated with the IT systems using DPWS. The main argument in support of this

architecture is the possibility to apply service orchestration of embedded and system services directly

without the need for adapters, as shown in Fig. 3.

Fig. 3. Direct orchestration of sensor node and enterprise web services is made possible due to their

compatibility.

A white paper by Boyd et al. [22] provides further reading on service orchestration and other SOA

concepts along with case studies of applying SOA to manufacturing infrastructure. The use of

proprietary or nonstandard SOA implementations requires translation middleware when working with

standardized service orchestration, such as Business Process Execution Language (BPEL).

As our approach aims at limiting the external dependencies of the SOA implementation for devices

the work presented in this paper considers standard SOAP-based web services.
SOAP web services are entirely based on open standards and rely heavily on the usage of XML and

XML Schema Definition Language (XSD) to ensure interoperability. Thus, each SOAP message is a

XML document that must first be serialized, transmitted, received, and then parsed. To avoid these

resource-intensive operations being performed on the sensor nodes, researchers are investigating the

use of middleware software deployed on gateway devices that first communicate.

With the nodes in an ad-hoc manner and then translate their functionality as web services to

external systems. An example of such a design was proposed by Avilés-López et al. [23]; In their

system, the middleware included an advanced registry mechanism. A similar solution that also

incorporated a light-weight, ad -hoc service protocol within the sensor network was presented by

Leguay et al. [11]. In that work, the translation between internal and external DPWS-compatible

services was done on the gateway. The architecture supports one- to-one, but also many- to-one,

relations between the services with a highly flexible eventing mechanism built upon hierarchical

subscriptions. Another approach more closely related to the work presented in our paper is that by

Priyantha et al. at Microsoft Research [24]. Instead of using specialized, ad-hoc services for node -to-

node communications, they proposed to use web services described by WSDL. To keep the overhead

ISRJournals and Publications Page 378

International Journal of Advanced Research in

 Computer Science Engineering and Information Technology

Volume: 3 Issue: 1 26-Jun-2014,ISSN_NO: 2321-3337

low, these services were implemented using HTTP binding and not SOAP. This provides for shorter

and easier to parse and serialize messages but also implied constraints on the structure of the data

transmitted and impaired the compatibility with enterprise systems. To address these issues, Priyantha

et al. proposed an external server called Controller that more or less fulfilled the role of the gateway

middleware presented in the previous papers. The controller served as a proxy that translated the

internal web services to SOAP-based services and provided eventing through the use of WS-Eventing.

In this way, the client applications communicated with the sensor nodes indirectly through the

controller. Also, presented in that paper are different techniques to lower the XML-related impact on

performance as well as an analysis of possible application scenarios where this approach will lead to

cost savings. In contrast with the aforementioned approaches, the solution presented in the present

paper deploys fully compatible SOAP-based web services directly on a highly constrained sensor plat-

form and hence eliminates the need for additional middleware. In this way, its main contribution is an

efficient implementation that combines a lightweight TCP/IP stack—lwIP [25] and a gSOAP [26]

web service toolkit. The two different APIs to access the network services are provided by lwIP: a

low-level “raw” API relies on callbacks, and a higher-level “sequential” API is easier to work with

but also implies higher resource consumption. We used the “raw” API to minimize the footprint of

our solution.
The a highly efficient runtime environment to process SOAP messages that uses either a general-

purpose XML parser or an application-specific one that can be generated from the service description

(WSDL) file is included in gSOAP toolkit. The use of an application -specific parser and serializer

provides for lowering the RAM and ROM utilization, as the processing logic for the input and output

generators is optimized for the specific usage, and there are no execution paths left unused by the

application.
SOAP-based service implementation with a general-purpose XML parser on Tmote Sky was

reported by Yazar et al. [27]. Their solution differs from our approach in that it does not provide tool

support for developing SOAP-based services but rather is only used to evaluate the performance of

their RESTful implementation.

A work that is aiming at deploying standard-based embedded web services directly on resource

constrained sensor nodes is available from open source project WS4D-uDPWS [28]. A mechanism to

dynamically discover the network location of a service, neither by their RESTful nor their SOAP

implementation is deployed. Al-though, the intended outcomes of WS4D-uDPWS and our approach

are very similar the implementation techniques differ in many aspects. While we built our solution on

an existing service implementation (i.e., stripped version of gSOAP), uDPWS provides its own web

service runtime which is highly optimized and has smaller RAM and ROM footprint than our runtime.

Code-generation is provided, but it is based on text files with formatting and naming conventions

specific to WS4D-uDPWS..

IV. SENSOR NODES USING SOA

The sensor nodes must be deployed and configured with the least manual work possible due to the

number of nodes in WSN. The initialization and con figuration parameters can depend on various

conditions, most probably originating outside of the sensor network.

Looking at factory automation as an example, these conditions are connected to MES systems but

also to strategic decisions in ERP systems, historical data from databases, etc. Any changes done in

these systems that affect the behavior of the sensor nodes must be propagated down while sensor data,

after undergoing filtering and aggregation, must be propagated up. Using SOA all the way down to

the smallest devices results in increased compatibility, where auto -configuration and plug-and-play

capabilities can be modeled as services. In such way, higher flexibility for tuning or even changing the

manufacturing processes is achieved stemming from direct interactions between all system

ISRJournals and Publications Page 379

International Journal of Advanced Research in

 Computer Science Engineering and Information Technology

Volume: 3 Issue: 1 26-Jun-2014,ISSN_NO: 2321-3337

components. However, this flexibility also leads to complex systems integration and difficulties when

defining or verifying the required functionality of particular module or the system as a whole.

Handling this complexity requires data models that constrain the possible interactions and formats for

data exchange. Examples of such data models are OPC- UA information model or Business to

Manufacturing Markup Language (B2MML) used to link business systems such as ERP and supply

chain management systems with manufacturing systems such as control systems and MES.

A. SERVICES PROVIDED BY WEB

The SOAP-based web service is needed to parse verbose XML documents and it is its drawback.

There are already a number of compression techniques that require a factor of ten less RAM, CPU,

and bandwidth as compared to text-based XML. The most promising of these is Efficient XML

Interchange (EXI) [29], a W3C recommendation as of March 10, 2011.

EXI is defined as an alternative mean to represent the XML Information Set [30] that provides one-

to-one translation to text-based XML representation.

Depending on the document properties and processing options specified, EXI provides between

50% and 99% reduction in size and up to 15 times faster processing [31]. Even verbose XML can be

used as a service message protocol for sensor nodes is shown by the this paper’s work; future binary

XML representations will only extend the applicability of the presented solution. Introducing the EXI

encoding to embedded web service implementations, however, will require the ability to change the

XML parser and serializer with EXI ones. Our first attempt in this direction is the creation of EXIP

open source project1. The use of binary encoding that is already available as a commercial product is

to introduce a transparent HTTP proxy in between.

The role of the proxy is to translate binary EXI encoding to text -based XML and vise versa. More

details on the opportunities and challenges of using EXI in industrial environment are presented in

[32].

B. SYSTEM AND SUPPORTING TOOLS

The development of web service applications depends upon a runtime system responsible for the

network communications, parsing, validation, and serialization of service requests and responses.

Besides the runtime system, software tools are used to map data structures in the XML to

programming language constructs—also known as XML data binding.

Based on the characteristics of our target domain, the required properties of the SOA runtime

system and supporting tools are as follows:
• Written in programming language that is used for sensor and actuator nodes development—currently

most widely used are C and its dialect nesC.

• Easily portable on different embedded platforms.
• Featuring small footprint implementation.
• Highly configurable—it should be possible to remove features that are not used or needed.

For C language, there are two web service toolkits, namely, gSOAP and Apache Axis2/C. While

gSOAP supports and has been ported on several embedded platforms, Axis2/C is mostly used on

Windows and Linux machines. Moreover, gSOAP run-time has a wide range of features that can be

selectively included or excluded from it. The version of gSOAP used in our solution has the following

components removed: XML DOM parser, HTTPS and SSL support, compression, logging module, all

support for attachments including SOAP with Attachments, MIME, DIME or MTOM, HTTP chunked

transfer mode.

ISRJournals and Publications Page 380

International Journal of Advanced Research in

 Computer Science Engineering and Information Technology

Volume: 3 Issue: 1 26-Jun-2014,ISSN_NO: 2321-3337

V. PROOF OF CONCEPT

WS -I Basic Profile 1.0 defines a bare minimum of constraints on the WSDL specification that make

different web service implementations compliant. Examples of such constraints are the use of SOAP

version 1.1 binding, HTTP 1.0 or HTTP 1.1 as

1Efficient XML Interchange Processor—http://exip.sourceforge.net/

a transport protocol. The applications developed using our solution are compliant with WS-I Basic

Profile 1.0 provided that the “ ” command-line option is used when executing gSOAP soapcpp2

code generator. The current enterprise systems are mostly conforming to this profile which enables

interoperability with our SOA approach for sensor nodes.

Fig. 4. DPWS protocol stack.

DPWS, in contrast, poses many more requirements aimed at providing plug-and-play capabilities as

well as automatic deployment and configuration. It also denotes the usage of SOAP version 1.2 as

well as the addressing fields in the SOAP header defined in WS-Addressing specification. Moreover,

a set of pre-defined services must be available on the devices willing to comply with the DPWS

standard. As an example, a manifest ser-vice called device is responsible for hosting and advertising

the other services that represent the functionality provided by the device. Another predefined service,

with an interface consisting of six operations, is specified in WS-Discovery—a protocol that enables

dynamic discovery of available services on the network without the use of centralized registry such as

UDDI. All six operations use SOAP- over-UDP to minimize network traffic. Fig. 4 shows all of the

protocols included in the DPWS specification, with those not covered by our solution illustrated with

hatching.
When the required settings for using SOAP v1.2 and SOAP-over-UDP are specified as described by

the gSOAP documentation, our current solution supports SOAP- over-UDP, SOAP 1.2, WSDL 1.1,

WS-Addressing, and certain parts of WS-Discovery. Two WS-Discovery operations are included in

our implementation: Probe, which is a query multicasted to specific IP multicast address and port, and

ProbeMatch, which is the response of the queried nodes to the Probe message. The use of discovery

proxies, as defined by the specification is not sup-ported. Nevertheless, this limited implementation is

sufficient to locate a service advertised by a WS-Discovery-compliant device.
The security scheme defined by DPWS enables protection of the service executions in three

directions: authentication of the parties involved, message integrity protection, and confidentiality.

While the majority of the target applications will not require confidentiality for sensor data and/or

actuator control data, authenticity, and integrity are crucial especially for wire-less communications.

However, the resources available on cur-rent sensor platforms are not sufficient for supporting

standard based authentication mechanisms based on digital certificates and asymmetric cryptography.

For that reason, the presented approach is only appropriate for noncritical applications where the

sensor nodes are behind enterprise firewall.

ISRJournals and Publications Page 381

International Journal of Advanced Research in

 Computer Science Engineering and Information Technology

Volume: 3 Issue: 1 26-Jun-2014,ISSN_NO: 2321-3337

A. ARCHITECTURE

The web service implementation presented in this paper is built upon the gSOAP toolkit. The gSOAP

design supports different network layers with BSD -socket API supported out of the box. However, its

run-time is written with the perception that the network interface it uses supports sequential execution,

which requires the use of threading. Thread-based network APIs provide abstraction of the complex

event-driven nature of network communications. The tradeoff inherited from this abstraction is a

higher resource consumption, which makes it not suitable for highly constrained sensor nodes [25].

So, to use the event-based “raw” lwIP API, the network layer of gSOAP runtime was rewritten and an

additional lwIP wrapper was introduced. This includes splitting of the sequential execution blocks that

contain blocking network operations into smaller nonblocking programming sequences connected

with callback functions. As an example, consider the following simplified programming fragment that

uses threaded network layer.

Block_1 () { blocking_connect ();

/* The TCP connection is established */ serialize_http_header (); blocking_send ();

/* The http header is sent */ serialize_soap (); blocking_send ();

/* The soap message is sent */ cleanup ();

}

The equivalent functionality based on nonblocking lwIP net-work operations and callbacks is coded

as follows.

Block_1 () { store_soap_state ();

lwip_connect (); /* calls Block_2 () when connected */
}

Block_2 () { serialize_http_header ();

lwip_send (); /* calls Block_3 () when the header is sent */
}

Block_3 () { serialize_soap ();

lwip_send (); /* calls Block_4 () when the soap is sent */
}

Block_4 () { cleanup ();

}

ISRJournals and Publications Page 382

International Journal of Advanced Research in

 Computer Science Engineering and Information Technology

Volume: 3 Issue: 1 26-Jun-2014,ISSN_NO: 2321-3337

The listings also present the concept of transmission on the fly—when the HTTP header is

serialized, it is sent over the net-work. Then, the sending buffer is released and used for storing the

SOAP message before its transmission. The same technique is used on the receiving side: when the

HTTP header is received it is parsed and then the receiving buffer is released. In this way, the size of

the buffers, and hence the RAM usage, can be restricted.

The overall architecture is depicted in Fig. 5. The modules responsible for power management,

sampling the sensors and aggregating the data are not affected by the service interface; hence, legacy

code can be reused. Instead of connecting the input and output of the sensor application to a network

API implementing proprietary, specialized protocols, the data are passed to the gSOAP runtime using

handlers.

Fig 5. System architecture

The runtime serializes the output data to a SOAP message, and then uses lwIP to send it over the

network. The opposite is true for input data: it is first parsed and then forwarded to the sensor

application. The interface describing the services provided by and consumed by the nodes is available

through the use of standardized Web Service Description Language. This allows for so-called top-

down SOA development, where the WSDL interfaces for the nodes are de-fined first—usually using

graphical tools 2—and then are used to generate the SOAP runtime. At the end, the developer

connects the provided interface with the sensor application. This is the approach used in the

development of our testbed, described in the subsequent subsections.

B. SENSOR PLATFORM

The Mulle sensor platform [33] used in our experimental setup is equipped with a Renesas M16C/62

microcontroller running at 10 MHz with 31 kB RAM and 384 KB programming memory. A Mitsumi

ISRJournals and Publications Page 383

International Journal of Advanced Research in

 Computer Science Engineering and Information Technology

Volume: 3 Issue: 1 26-Jun-2014,ISSN_NO: 2321-3337

Bluetooth radio transceiver, operating at 57 kbits/s, was used in our testbed to enable mobility through

the use of a mobile phone as an access point. The Mulle sensor plat-form is also available with an

IEEE 802.15.4 radio transceiver, which also can be employed instead of the Bluetooth one, pro-vided

that the lwIP stack is configured for using it.

PROOF OF CONCEPT EXPERIMENT

Several services were implemented to test the applicability and performance of our solution. The first

was a very simple, light service with operations for switching a LED on and off and for checking the

status of the LED. Tests were performed under different scenarios with the service being hosted on a

sensor node using our solution, on a stationary PC or on both. To check compatibility, two different

implementations of the light service were used on the PC. The first was C-based, using a gSOAP port

for Linux. The other was Java-based, using JAX-WS API running on a GlassFish server. In both cases

the interactions between the sensor node and the PC proceeded without any compatibility problems.
It was decided to replicate a real-world scenario where, despite the overhead, the SOA

implementation would still be beneficial to use [34] for the second test.

In such an application, the system must lack any real-time properties. Also, it should be possible to

aggregate the sensor data before its dissemination that should happen at long intervals. The source of

inspiration was a district heating project [35] aimed at increasing the efficiency of energy distribution.
1) District Heating Scenario: Different sensors and actuators are hard-wired together in today’s

district heating substations. This limits the possibilities for system optimization as communication

barriers limit the information interchange. With wireless sensor platforms integrated in such district

heating devices as a circulation-pump, heat meter and temperature sensors, greater opportunities for

system optimization are achieved as information can be interchanged without limitations.
There is no direct need for a central control unit, as the sensor nodes are powerful enough to control

the relatively slow heating process since SOA is integrated in the end nodes. The slow process makes

the use of SOA over WSAN particularly suitable as there is no need for frequent data transmission,

which would decrease the expected life-length of the sensor platforms. Thus, the nodes are in sleep

mode most of the time with short active intervals for sensor sampling and data aggregation. The

transceiver is infrequently turned on only when the highly aggregated data are sent directly to the

enterprise systems responsible for heating process management.
In our testbed, nodes were equipped with temperature and humidity sensors, and the data sent to the

server consisted of multiple metrics, such as current sensor readings as well as the average, minimum,

maximum, and standard deviation of the temperature and humidity for a given period, as shown in

Fig. 6. The intervals in which the sensor nodes communicate the data were controlled by the

management system. For the implementation of the heating process management system we chose the

SOA Sword fish toolkit that supports deployment on a Java EE application server. Also, implemented

on the server was a Java version of WS-Discovery, which was used to advertise the heating service on

the network.

ISRJournals and Publications Page 384

International Journal of Advanced Research in

 Computer Science Engineering and Information Technology

Volume: 3 Issue: 1 26-Jun-2014,ISSN_NO: 2321-3337

 7

TABLE I
TIME NEEDED BY THE MULLE SENSOR PLATFORM TO
PROCESS SOAP MESSAGES

Fig.6. Segment of the service request by sensor node which contains an aggregation of the sensor data

for the period of interest.

The implementation started with modeling the desired inter-actions between the sensors and the

management system using Web Service Description Language. The abstract WSDL ser-vice

definitions were then fed into Swordfish framework to generate the serialization and parsing code.

The same WSDL inter-face was used by the gSOAP code generation tools. The code produced was

then combined with our modified gSOAP run-time, lwIP, and our network layer wrapper, which were

deployed on the Mulle sensor platform. To avoid manual configuration of the server address for each

sensor node, two operations of the WS-Discovery were also implemented and deployed on the sensor

platform to dynamically locate the heating service.
2) MOBILITY SCENARIO: The heating management service was also used as a testbed for a

mobility scenario where a sensor node is being carried by a person with a Bluetooth -enabled mo-bile

phone. This can be useful for assisting and documenting manual inspections and diagnostics of

industrial equipment by technicians for example. The phone provides access to a 3G network that

enables connectivity of the sensor node and the Java server on a TCP/IP layer. With this infrastructure

setup, the sensor node seamlessly communicates the aggregated sensor data to the enterprise

application using web services. However, an important requirement in this scenario is the presence of

a se-cured VPN connection between the mobile phone/wireless HMI and the enterprise network as our

solution does not support the security mechanisms defined in the DPWS specification and the

connection is established from outside the enterprise firewall.

ISRJournals and Publications Page 385

International Journal of Advanced Research in

 Computer Science Engineering and Information Technology

Volume: 3 Issue: 1 26-Jun-2014,ISSN_NO: 2321-3337

C. PERFORMANCE MEASUREMENTS

For each service (client or server) added, an additional 13 KB of ROM is required, on average. A

gSOAP runtime with no network layer or deployed services requires around 5.5 KB of RAM and 123

KB of programmable memory. During service invocation, 3 KB of RAM are allocated and hence need

to be avail-able on the system. If only one service is executed at a time, the overall RAM consumption

is 8.5 KB independent of the number of services added. However, allowing different service

executions to be interleaved requires an additional 3 KB of RAM for each service deployed. The time

needed to parse and serialize a particular request or response is highly dependent on its size, structure

and the number of name spaces used in the XML document. Table I shows the processing time for

messages used in the LED and heating service examples. To evaluate the latency overhead, we used

the GetStatus operation of the LED web service hosted on a PC running Linux with a Bluetooth v1.2

dongle. A Mulle sensor node, with LED service client implemented using our solution, was also set

up within transmission range. All communication were performed using the Bluetooth Personal Area

Networking (PAN) profile, where the PC was hosting the Network Access Point (NAP) service and

the Mulle acting as user (PAN-U) . The deployment of the LED service client on the Mulle node

allowed it to use sleep mode such that it periodically waked up and sent GetStatus SOAP request, then

waited for the response, parsed it and went back to sleep mode. Having the node as a LED server

would in-crease the power consumption substantially as it would require the Bluetooth module to be

powered on at all times. The current approach allows the Bluetooth module to be duty-cycled.
The same interactions between the PC and the Mulle node were implemented using a bare TCP

approach with one-byte payload. In such a way, the type of operation (GetStatus or Switch) is

encoded using a single bit and another bit is used to indicate the status (on or off) of the LED.

Although it cannot be applied in practice, the ad-hoc one-byte TCP implementation represents the

shortest possible encoding of the LED operations over TCP/IP thereby enabling the overhead of our

solution to be measured.
Fig. 7 shows the completion time for our SOAP-based solution (514 ms) compared to the bare TCP

approach (129 ms). The measured time, averaged over 50 transmissions, is given for the three phases

of the service execution, i.e., TCP connection establishment, SOAP message transmission and XML

processing. The results show that the time to parse and serialize SOAP messages by the Mulle sensor

node denotes just a small part of the latency related to web service invocation—33 ms for the Get-

Status LED service or about 6.5% of the total service execution time. The larger part is due to the

actual transmission. This observation proves that the use of more compact representation of the

service messages, even compression and other techniques which affect the processing speed, will

improve the real-time properties of the system. Moreover, it takes almost four times longer to

complete the SOAP service compared to a one-byte TCP payload ad-hoc representation of the LED

service operations.

VI. FUTURE WORK

The work presented in this paper shows that even highly resource-constrained networked sensor nodes

can be integrated within an IT infrastructure using standard SOA technology. However, even efficient

implementation poses significant performance overhead, which makes the solution only suit-able for

applications where the sensor data can be heavily aggregated and transmitted over relatively long

periods. One such example from energy management domain was presented in the paper, but other

applications for home and factory automation networks would also meet this criterion. The level of

data aggregation and the length of non transmission intervals needed depend on many parameters such

ISRJournals and Publications Page 386

International Journal of Advanced Research in

 Computer Science Engineering and Information Technology

Volume: 3 Issue: 1 26-Jun-2014,ISSN_NO: 2321-3337

as power consumption, sleep schedule, real-time requirements, etc. Therefore, a precise analysis

showing their exact threshold that would make this solution beneficial is an important topic for future

work. This analysis must take into account all parameters, and their interdependence, that play a role

in the applicability of the SOAP-based web services. This analysis must also provide a comparison

with emerging standards for embedded web services such as those described by Shelby in [36].

Figure 7 Completion time

Applying the same SOA approach to full-scale sensor net-works, where most communications are

multihop and the nodes use IEEE 802.15.4 radio, is another area for future exploration. In addition,

different ways to lower the related overhead should be investigated. The most important in this respect

is the use of binary encoding for the SOAP messages.

VII. CONCLUSION

A few techniques for improving efficiency that allow us to deploy standard SOAP web services on

resource-constrained sensor nodes is presented. These techniques are implemented in a proof-of-

concept application that connects sensor nodes to an enterprise application. The solution presented in

this paper enables standard-based and direct application-layer integration between web ser-vice-

enabled IT systems and resource-constrained sensor nodes. Its main contribution is the efficiency of

the provided implementation, which combines lightweight TCP/IP stack implementation and SOAP-

based web service implementation. In addition, we included performance measurements on the impact

of this method on latency. One important observation was that the overhead related to SOAP message

processing is very small compared to message transmission. We also showed an example application

that can benefit from the SOA approach, despite the related overhead.

ACKNOWLEDGMENT

The authors would like to thank the Department of Information Technology, RMK Engineering

College, Chennai for their support. They gratefully acknowledge the valuable comments and

suggestions from the anonymous reviewers and associate editor.

ISRJournals and Publications Page 387

International Journal of Advanced Research in

 Computer Science Engineering and Information Technology

Volume: 3 Issue: 1 26-Jun-2014,ISSN_NO: 2321-3337

REFERENCES

[1] V. Gungor and G. Hancke, “Industrial wireless sensor networks: Chal-lenges, design principles, and
technical approaches,” IEEE Trans. Ind. Electron., vol. 56, no. 10, pp. 4258–4265, Oct. 2009.

[2] A. Willig, “Recent and emerging topics in wireless industrial communi-cations: A selection,” Trans.
Ind. Informat., vol. 4, no. 2, pp. 102–124, May 2008.

[3] L. D. Xu, “Enterprise systems: State-of-the-art and future trends,” IEEE Trans. Ind. Informat., vol. 7,
no. 4, pp. 630–640, Nov. 2011.

[4] S. de Deugd, R. Carroll, K. E. Kelly, B. Millett, and J. Ricker, “SODA: Service oriented device
architecture,” IEEE Pervasive Comput., vol. 5, no. 3, pp. 94–96, Jul.-Sep. 2006.

[5] H. Bohn, A. Bobek, and F. Golatowski, “SIRENA—Service infrastruc-ture for real-time embedded
networked devices: A service oriented framework for different domains,” in Proc. Int. Conf. Syst. Int.
Conf. Mobile Commun. Learning Technol., ICN/ICONS/MCL’06, 2006, p. 43.

[6] Devices Profile for Web Services Version 1.1, OASIS Std., 2009. [Online]. Available:
http://docs.oasis-open.org/ws-dd/dpws/1.1/os/ wsdd-dpws-1.1-spec-os.pdf

[7] I. K. Samaras, J. V. Gialelis, and G. D. Hassapis, “Integrating wireless sensor networks into enterprise
information systems by using web ser-vices,” SENSORCOMM, pp. 580–587, 2009.

[8] A. Wolff, S. Michaelis, J. Schmutzler, and C. Wietfeld, “Network-cen-tric middleware for service
oriented architectures across heterogeneous embedded systems,” in Proc. IEEE 11th Int. EDOC Conf.
Workshop, EDOC’07, 15–16, 2007, pp. 105–108.

[9] R. Bosman, J. Lukkien, and R. Verhoeven, “Gateway architectures for service oriented application-
level gateways,” IEEE Trans. Consumer Electron., vol. 57, no. 2, pp. 453–461, May 2011.

[10] G. Moritz, E. Zeeb, F. Golatowski, D. Timmermann, and R. Stoll, “Web services to improve

interoperability of home healthcare devices,” in

Proc. 2rd Int. Conf. Pervasive Comput. Technol. Healthcare, Pervasive Healthcare, 2009, pp. 1–4.
[11] J. Leguay, M. Lopez-Ramos, K. Jean-Marie, and V. Conan, “An ef-ficient service oriented

architecture for heterogeneous and dynamic wireless sensor networks,” in Proc.33rd IEEE Conf.
Local Comput. Networks, LCN’08, 2008, pp. 740–747.

[12] C. Groba and S. Clarke, “Web services on embedded systems—A performance study,” in Proc. IEEE

8th Int. Conf. Pervasive Comput. Commun. Workshops (PERCOM Workshops), Mar. 2010, pp. 726–

731.

[13] A. Lee and J. Lastra, “Data aggregation at field device level for indus-trial ambient monitoring using
web services,” in Proc. IEEE 9th Int. Conf. Ind. Informat. (INDIN), Jul. 2011, pp. 491–496.

[14] F. Jammes and H. Smit, “Service-oriented paradigms in industrial au-tomation,” IEEE Trans. Ind.
Informat., vol. 1, no. 1, pp. 62–70, Feb. 2005.

[15] G. Candido, A. Colombo, J. Barata, and F. Jammes, “Service-oriented infrastructure to support the
deployment of evolvable production sys-tems,” IEEE Trans. Ind. Informat., vol. 7, no. 4, pp. 759–
767, Nov. 2011.

[16] A. Ramos, I. Delamer, and J. Lastra, “Embedded service oriented mon-itoring, diagnostics and
control: Towards the asset-aware and self-re-covery factory,” in Proc. IEEE 9th Int. Conf. Ind.
Informat. (INDIN), Jul. 2011, pp. 497–502.

[17] A. Cannata, M. Gerosa, and M. Taisch, “Socrades: A framework for developing intelligent systems in
manufacturing,” in Proc. Int. Conf. Ind. Eng. Eng. Manage., IEEM’08, 8–11, 2008, pp. 1904–1908.

[18] A. Kalogeras “Vertical integration of enterprise industrial systems utilizing web services,” IEEE
Trans. Ind. Informat., vol. 2, no. 2, pp. 120–128, May 2006.

[19] T. Sauter, “The three generations of field-level networks—Evolution and compatibility issues,” IEEE
Trans. Ind. Electron., vol. 57, no. 11, pp. 3585–3595, Nov. 2010.

[20] G. Cena, A. Valenzano, and S. Vitturi, “Hybrid wired/wireless net-works for real-time
communications,” IEEE Ind. Electron. Mag., vol. 2, no. 1, pp. 8–20, 2008.

[21] “Principled design of the modern web architecture,” ACM Trans.

 Internet Technol., vol. 2, no. 2, pp. 115–150, 2002. 9

ISRJournals and Publications Page 388

International Journal of Advanced Research in

 Computer Science Engineering and Information Technology

Volume: 3 Issue: 1 26-Jun-2014,ISSN_NO: 2321-3337

[22] A. Boyd, D. Noller, P. Peters, D. Salkeld, T. Thomasma, C. Gif-ford, S. Pike, and A. Smith, “SOA

in Manufacturing—Guidebook,”
IBM Corporation, MESA International and Capgemini, Tech. Rep., 2008. [Online]. Available:
ftp://public.dhe.ibm.com/soft-ware/plm/pdif/MESA_SOAinManufacturingGuidebook.pdf

[23] E. Avilés-López and J. A. García-Macías, “TinySOA: A service-ori-ented architecture for wireless
sensor networks,” Service Oriented Comput. Appl., vol. SOCA, pp. 99–108, 2009.

[24] N. B. Priyantha, A. Kansal, M. Goraczko, and F. Zhao, “Tiny web services: Design and
implementation of interoperable and evolvable sensor networks,” in Proc. 6th ACM Conf. Embedded
Network Sensor Syst., SenSys’08, New York, NY, USA, 2008, pp. 253–266.

[25] A. Dunkels, “Full TCP/IPfor 8-bit architectures,” in Proc. 1st Int. Conf. Mobile Syst., Appl.

Services, MobiSys’03, New York, 2003, pp. 85–98.

[26] R. A. van Engelen and K. A. Gallivany, “The gSOAP Toolkit for web services and peer-to-peer
computing networks,” in Proc. IEEE 2nd Int. Symp. Cluster Comput. Grid, 2002, p. 128.

[27] D. Yazar and A. Dunkels, “Efficient application integration in IP-based sensor networks,” in Proc.
ACM 1st Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings, BuildSys’09,
Berkeley, CA, Nov. 2009, pp. 43–48.

[28] C. Lerche, N. Laum, G. Moritz, E. Zeeb, F. Golatowski, and D. Timmermann, “Implementing
powerful web services for highly resource-constrained devices,” in Proc. IEEE Int. Conf. Pervasive
Comput. Commun. Workshops (PERCOM Workshops), Mar. 2011, pp. 332–335.

[29] Efficient XML Interchange (EXI) Format 1.0, W3C Std., Mar. 2011. [Online]. Available:

http://www.w3.org/TR/2011/REC-exi-20110310/

[30] J. Cowan and R. Tobin, XML Information Set, (Second Edition). W3C [Online]. Available:
http://www.w3.org/TR/xml-infoset/

[31] G. White, J. Kangasharju, D. Brutzman, and S. Williams, “Efficient XML Interchange
Measurements Note, W3C,” Tech. Rep., 2007. [On-line]. Available: http://www.w3.org/TR/exi-
measurements/

[32] R. Kyusakov, H. Mäkitaavola, J. Delsing, and J. Eliasson, “Efficient XML interchange in factory

automation systems,” in Proc. IEEE 37th Annu. Conf. Ind. Electron. Soc., IECON’11, Nov. 2011, pp.

4478–4483.

[33] J. Johansson, M. Völker, J. Eliasson, Å.Östmark, P. Lindgren, and J. Delsing, “Mulle: A minimal
sensor networking device—Imple-mentation and manufacturing challenges,” Proc. IMAPS Nordic,
pp. 265–271, 2004.

[34] J. Delsing and J. G. v. Deventer, “A service oriented architecture to enable a holistic system
approach to large system maintenance infor-mation,” Proc. CM-MPFT, 2010.

[35] J. v. Deventer, J. Gustafsson, J. Eliasson, J. Delsing, and H. Mäk-itaavola, “Independence and

interdependence of systems in district heating,” in Proc. IEEE 4th Annu. Syst. Conf., 5–8, 2010, pp.

267–271.

[36] Z. Shelby, “Embedded web services,” IEEE Wireless Commun., vol. 17, no. 6, pp. 52–57, 2010.

Powered by TCPDF (www.tcpdf.org)

ISRJournals and Publications Page 389

http://www.tcpdf.org

