
International Journal of Advanced Research in Computer Science Engineering and Information Technology

Volume: 6 Issue: 3 Apr,2024,ISSN_NO: 2321-3337

DYNAMIC DETECTION OF DUPLICATE CONTENT IN CLOUD

USING MERKLE HASH TREE

Chakravarthi.A.S1, Karthik.K2, Dilli Prasad.K3, Aarthi V4*
1234UG Scholar-Dept.CSE, GRT Institute Of Engineering & Technology, Tiruttani, India.

4* Asst. Professor-Dept.CSE, GRT Institute Of Engineering & Technology, Tiruttani, India.

chandhuas2085@gmail.com , karthikkatta4526@gmail.com ,dilliprasad601@gmail.com

*Corresponding Author: aarthi.v@grt.edu.in

Abstract

We all know that Cloud computing is

being used all the companies for effective

data storage and retrieval system. Cloud

has to be so scalable to handle the load

from the users. But the storage of cloud

would become a problem as number of

users and data storage will be infinite.

Mainly duplication of files would be the

main issue. There is no process to filter

and remove the same files from the cloud

server in order to avoid the storage issues.

In our project, we are removing the

duplicate files from the server through

Merkle hash Tree Algorithm and allows to

store only the Non duplicate files in the

cloud server. This will surely avoid

Deduplication of files in Cloud server.

Keywords: Data storage, Duplicate files,

Storage issues, Merkle hash Tree

Algorithm, Deduplication, Cloud server,

Data retrieval, Effective system.

1. Introduction

Cloud computing has emerged as a crucial

technology in the IT industry, offering

reliable software, hardware, and

Infrastructure as a Service (IaaS) via the

Internet and remote data centers. It

facilitates complex computing tasks across

various IT functions, from storage to

application services, attracting

organizations and individuals due to

reduced capital costs and the increasing

volume of data. Cloud

service providers integrate frameworks for

parallel data processing, enabling users to

access resources and deploy programs

effortlessly. With its model of ubiquitous,

on-demand access to computing resources,

cloud computing addresses economic and

technological barriers, allowing

organizations to focus on core business

activities while enjoying flexibility and

resource availability. Cloud service models

encompass Platform as a Service (PaaS),

Software as a Service (SaaS), and IaaS.

The rise of wireless networks and mobile

devices has fueled mobile cloud

computing, allowing users to outsource

tasks and store data externally, improving

performance and user experience despite

inherent limitations.

2. Related Work

In contemporary enterprise data protection,

disk-based deduplication storage has

superseded tape libraries, offering a

compact and economical solution.

Deduplication, the process of eliminating

redundant data segments, facilitates

efficient storage on disk. Crucially, high

throughput, exceeding 100 MB/sec, is

imperative for swift backup completion.

However, achieving this on low-cost

systems with limited RAM poses

challenges, necessitating innovative

solutions. This paper presents three

techniques utilized in the Data Domain

deduplication file system to alleviate disk

bottlenecks: the Summary Vector for

segment identification, Stream-Informed

ISRJournals and Publications Page 1838

International Journal of Advanced Research in Computer Science Engineering and Information Technology

Volume: 6 Issue: 3 Apr,2024,ISSN_NO: 2321-3337

Segment Layout for optimized data

arrangement, and Locality Preserved

Caching for enhanced cache hit ratios.

These techniques significantly reduce disk

accesses, enabling a modern system to

operate at 90% CPU utilization with

minimal hardware requirements.

Ultimately, they empower efficient single-

stream throughput of 100 MB/sec and

multi-stream throughput of 210 MB/sec,

ensuring robust data protection in

enterprise environments. [1]

Imagine having lots of files on your

computer that are pretty much the same.

We looked at a bunch of these files from

different places around the world where

many people work. From what we learned,

we made a new way for computers to store

these files more efficiently. We figured out

how to make the files take up less space

while still keeping all the important stuff.

We also made sure our method didn't use

up too much computer memory, CPU

power, or hard drive resources. Our new

system helps computers handle big

amounts of data better without slowing

down. We explain how it works and show

that it does a good job at saving space and

organizing the files.[2]

We looked at the files saved on 857

computers at Microsoft over four weeks.

We wanted to see how good a method

called data deduplication is at saving space

on these computers. We compared two

ways of doing this: one where entire files

are checked for duplicates, and another

where only parts of files are checked. We

found that checking entire files saves

about three-quarters of the space compared

to the more thorough method for regular

files, and 87% for backup files. We also

checked how messy the files were and

found that most of them are not messy.

Additionally, we looked at how big the

files were and found that most of them are

large and not organized.[3]

Many companies use deduplication to save

money and make their data centers more

efficient. But making this process faster

for important tasks has been tricky because

it usually slows things down. Our solution,

called iDedup, tackles this problem. We

noticed that when you organize data in a

certain way, you can save space and make

things faster. So, we only organize certain

chunks of data to avoid making things

messy. We also found a clever way to keep

track of what's what without slowing

things down too much. Our tests show that

iDedup can save a lot of space without

making computers much slower.[4]

Studies have found that Cloud storage

systems often have a lot of duplicate data,

especially when it comes to small tasks.

However, just removing this duplicate data

can make things messy and slow. We

came up with a solution called POD that

focuses on making things faster without

sacrificing space savings. Unlike other

methods that focus mainly on saving

space, POD also considers making small

tasks faster. Our tests showed that POD

can make Cloud storage systems perform

up to 87.9% better than other methods,

with an average improvement of 58.8%.

Plus, it still saves space just as well as

other methods, making it a win-win

solution.[5]

3. Objective

The project aims to enhance Dropbox

cloud storage by implementing a scalable

and efficient system for detecting and

removing duplicate files during the upload

process. This system will cater to multiple

users and device, the project seeks to

quantify the potential storage space

savings that can be achieved through the

proposed method in real-world scenarios,

providing valuable insights into the

practical benefits of duplicate file

detection and removal in cloud storage

environments.

ISRJournals and Publications Page 1839

International Journal of Advanced Research in Computer Science Engineering and Information Technology

Volume: 6 Issue: 3 Apr,2024,ISSN_NO: 2321-3337

4. Proposed System

Data owner will upload the file, it will

encrypt and store in cloud. All deduplicate

files are maintained in separate server with

hashing index numbers, file which is

frequency accessed (reusable) by user is

maintained in a separate server and finally

unused files are maintained in a separate

server. We will be storing both Data & the

videos in the server For Data

Bucketization, Data is split into smaller

Parts, Encrypted and stored along with the

Index file. Requested Data is compared

with the Index file and Data is retrieved.

The Videos are Split into smaller Chunks

based on the time Frames. User will

request a Video along with the time

Frame. Server will Stream the Video from

the Requested Time Frame of the User.

5. Architecture Diagram

 Fig: 5.1 Architecture Diagram

6. Algorithm

A Merkle hash tree, or simply Merkle tree,

is a data structure used in computer

science to efficiently summarize and verify

the integrity of large sets of data. It plays a

significant role in blockchain technology,

peer-to-peer networks, and other systems

that require secure and efficient data

verification. Here’s a breakdown of how

the Merkle hash tree algorithm works.

7. Implementation

A modular design reduces complexity,

facilities change (a critical aspect of

software maintainability), and results in

easier implementation by encouraging

parallel development of different part of

system. Software with effective

modularity is easier to develop because

function may be compartmentalized and

interfaces are simplified. Software

architecture embodies modularity that is

software is divided into separately named

and addressable components called

modules that are integrated to satisfy

problem requirements.

7.1 User Interface Design

In this Module User interface is created so

that the data owner will upload the data to

the server. The main objective of this

module is to store and share the data by

uploading the file to the remote machine.

Data is Hashed and applied XOR

functionality and then finally stored in the

main server.

7.2 Cloud Server

Data owner will upload their data to the

cloud server and request for a particular

file is send to cloud server. Both the

upload and the file request are handled by

the main Cloud Server. During the file

request is processed main server will

communicate with the data owner and the

files are retrieved only after the approval

given the data owner.

7.3 MHT-Merkle Hash Tree

In this module, data is encrypted, Hashed

and XOR is applied only then the data is

uploaded to the server. Once the data is

uploaded, the entire data is chunked into

multiple parts using Merkle Hash Tree

algorithm and stored in separate data

servers. In cryptography and computer

science, 2a hash tree or Merkle tree is

ISRJournals and Publications Page 1840

International Journal of Advanced Research in Computer Science Engineering and Information Technology

Volume: 6 Issue: 3 Apr,2024,ISSN_NO: 2321-3337

a tree in which every leaf node is labeled

with the hash of a data block and every

non-leaf node .

7.4 Deduplication

In this module user will upload more

number of file on cloud on the same time

many people will upload same file in

different file name. So that more number

of space will occupied in cloud. For that

we implement duplicate detection by

reading the content of the text file. And

also we separate the file by frequency

accessing and infrequent file. We will

maintain the keyword in index in

encrypted form.

8. Experimental Results

Fig 8.3 Upload & Download File

Fig 8.4 Upload File

Fig 8.1 User Registration

Fig 8.2 Login page

Fig 8.5 Cloud Server

ISRJournals and Publications Page 1841

International Journal of Advanced Research in Computer Science Engineering and Information Technology

Volume: 6 Issue: 3 Apr,2024,ISSN_NO: 2321-3337

9. Conclusion & Future Work

Thus the project infer that user data will

secure on cloud by splitting the data on

cloud with encrypt the data. Whenever

user access the file from cloud , it will

reconstruct the file and provide it to the

user. Through this paper we found that

maximum level of duplication of files will

avoid using our techniques. Apart from

Data / Text files PDF, Videos, Images are

also to be verified and deduplications are

identified. Multiple Clouds to be

integrated if one cloud is full then

automatically data are transferred to the

another clouds and the same process.

10. References

[1] B. Zhu, K. Li, and R. H. Patterson,

“Avoiding the disk bottleneck in the data

domain deduplication file system,” in

Proc. 6th USENIXConf. File Storage

Technol., 2008, pp. 1–14.

[2] A. El-Shimi, R. Kalach, A. Kumar, A.

Ottean, J. Li, and S. Sengupta, “Primary

data deduplicationlarge scale study and

system design,” in Proc. USENIX Annu.

Tech. Conf., 2012, pp. 285– 296.

[3] D. T. Meyer and W. J. Bolosky, “A

study of practical deduplication,” ACM

Trans. Storage, vol. 7, no. 14, pp. 1–20,

2012.

[4] K. Srinivasan, T. Bisson, G. R.

Goodson, and K. Voruganti, “iDedup:

Latency-aware, inline data deduplication

for primary storage,” in Proc. 11th

USENIX Conf. File Storage Technol.,

2012, pp. 1–14.

[5] B. Mao, H. Jiang, S. Wu, and L. Tian,

“POD: Performance oriented I/O

deduplication for primary storage systems

in the cloud,” in Proc. IEEE 28th Int.

Parallel Distrib. Process. Symp., 2014, pp.

767–776.

[6] A. Wildani, E. L. Miller, and O.

Rodeh, “Hands: A heuristically arranged

non-backup in-line deduplication system,”

in Proc. IEEE 29th Int. Conf. Data Eng.,

2013, pp. 446–457.

[7] J. An and D. Shin, “Offline

deduplication-aware block separation for

solid state disk,” in Proc. 11th USENIX

Conf. File Storage Technol., 2013, pp. 1–

2.

[8] C. Constantinescu, J. Glider, and D.

Chambliss, “Mixing deduplication and

compression on active data sets,” in Proc.

Data Compression Conf., 2011, pp. 393–

402.

[9] V. Tarasov, et al., “Dmdedup: Device

mapper target for data deduplication,” in

Proc. Ottawa Linux Symp., 2014, pp. 83–

95.

[10] H. Yu, X. Zhang, W. Huang, and W.

Zheng, “PDFS: Partially dedupped file

system for primary workloads,” IEEE

Trans. Parallel Distrib. Syst., vol. 28, no.

3, pp. 863–876, Mar. 2017.

[11] J. Kaiser, T. S€uß, L. Nagel, and A.

Brinkmann, “Sorted deduplication: How to

process thousands of backup streams,” in

Proc. 32nd Symp. Mass Storage Syst.

Technol., 2016, pp. 1–14.

[12] S. Jiang and X. Zhang, “LIRS: An

efficient low inter-reference recency set

replacement policy to improve buffer

cache performance,” ACM SIGMETRICS

Perform. Eval. Rev., vol. 30, no. 1, pp. 31–

42, 2002.

[13] N. Megiddo and D. S. Modha, “ARC:

A self-tuning, low overhead replacement

cache,” in Proc. 2nd USENIX Conf. File

Storage Technol., 2003, vol. 3, pp. 115–

130.

ISRJournals and Publications Page 1842

International Journal of Advanced Research in Computer Science Engineering and Information Technology

Volume: 6 Issue: 3 Apr,2024,ISSN_NO: 2321-3337

Powered by TCPDF (www.tcpdf.org)

ISRJournals and Publications Page 1843

http://www.tcpdf.org

