Volume: 3 Issue: 3 18-Sep-2014, ISSN_NO: 2321-3337

COMPARISON BETWEEN HUMMINGBIRD AND ALE ALGORITHMS

¹ Dr.K.Ravikumar,², S.Anbueniyal³, A.Arokiya Benita

Asst. Professor Dept. of computer Science ¹, Research scholar²

Department of Computer Science, Tamil University, Thanjavur

ABSTRACT-This paper includes a fair comparison between the widely used algorithms in the data encryption field. The two main characteristics, which indentify and differentiate one from another by its ability to secure data against attacks. This paper provides comparison between to widely used encryption algorithms: Hummingbird and ALE encryption algorithms. The comparison has been conducted by running the process of different sizes of data blocks to evaluate the algorithm speed and quality. The presented comparison takes into consideration the behavior and performance of the algorithm with different data size.

Keyword: ALE, Hummingbird

1. INTRODUCTION

Encryption is a process of converting "unhidden" text to a "hidden" text to secure it against attacks. This process has another part where hidden text to be decrypted at the other end to be visible to all.

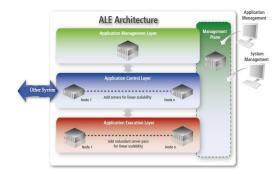
2. DATA ENCRYPTION ALGORITHMS

ALE: Authenticated light weight encryption algorithm, is the new encryption standard. The basic operation of ALE is the AES round transformation and the AES 128 key format. ALE is an online single pass authenticated encryption algorithm that supports operational associated data. ALE which is efficient both in hardware and software. It has a 256-bit secret internal state depended on both key and nonce. ALE is about half the size of AES-OCB. In the terms of speed for medium size messages in the light weight implementation, ALE is about 2.5 times faster than AES-OCB and about 4.5 times faster than ASE in its smallest implementation ALE in software using AES-NI instructions on a sandy bridge.

Volume: 3 Issue: 3 18-Sep-2014, ISSN_NO: 2321-3337

2.1 ALE Algorithm

ALE is an online single pass nonce based authenticated data encryption algorithm. Its encrypts and accepts 128 bit master key m, a message μ , associated data α and a 128 bit nonce $\nu \neq 0$.


ENCRYPTION OPERATIONS IN ALE:

- i. Padding
- ii. Initialization
- iii. Processing associated data
- iv. Processing message

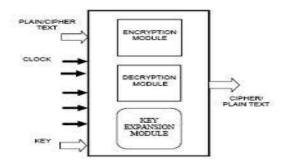
Encryption and authentication technique of ALE

2.2 Hardware architecture

ALE includes the three layers:

1. Application management layer Management layer for configuration and monitoring.

Volume: 3 Issue: 3 18-Sep-2014, ISSN_NO: 2321-3337



- 2. Application control layer Control layer for protocol level interaction with other system
- 3. Application execution layer For processing logic application

3. Hummingbird Algorithm

Hummingbird is an ultra-light weight encryption scheme used for privacy preserving identification and authentication protocol for RFID application. Hummingbird provides security with a small block size and also stringent response time and power consumption. Hummingbird listen elegant combination of above to cipher structure with a 16 bit block size, 256 bit key size and 80 bit internal state. The size of key and bit block size of Humming bird provides security level which is applicable for any RFID applications.

3.1 Encryption and decryption:

3.2 Attacks avoided by Hummingbird:

- Birthday Attack on the initialization
- Differential cryptanalysis
- Linear cryptanalysis
- Structural Attack
- Algebraic Attacks
- Cube Attack

International Journal of Advanced Research in

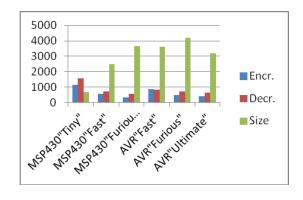
Computer Science Engineering and Information Technology

Volume: 3 Issue: 3 18-Sep-2014, ISSN_NO: 2321-3337

Encryption and Decryption process of ALE:

Design	Area	Net per 128-	Overhead	Powe
	(GE)	bit block	per	r
		(cc)	message(CC	(uW)
			,	
AES-ECB	2,437	226	-	87.84
AES-OCB2	4,611	226	451	171.2
				3
AES-OCB2	5,915	226	451	211.0
e/d				1
ASC-1 A	4,792	370	902	169.1
				1
ASE-1A e/d	4,963	374	902	193.7
				1
ASE-1B	5,516	234	902	207.1
				3
ALE	2,570	105	678	94.87
ALE e/d	2,709	105	678	102.3
				2

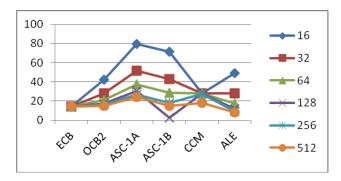
Encryption and Decryption of Hummingbird:


Target	Encr.	Decr.	Size
MSP430"Ti	1150	1555	670
ny"			
MSP430"Fa	566	729	2510
st"			
MSP430"F	333	570	3648
urious"			
AVR"Fast"	890	830	3600
AVR"Furio	475	720	4178
us"			
AVR"Ultim	395	642	3200
ate"			

International Journal of Advanced Research in

Computer Science Engineering and Information Technology

Volume: 3 Issue: 3 18-Sep-2014, ISSN_NO: 2321-3337



Hardware implementation of ALE compare with other:

Massage in bytes

Algorithm	16	32	64	128	256	512
ECB	14.11	14.11	14.11	14.11	14.11	14.11
OCB2	42.38	28.25	21.19	17.66	15.89	15.03
ASC-1A	79.62	51.38	37.25	30.19	26.66	24.15
ASC-1B	71.19	42.94	28.81	2.66	18.22	15.15
CCM	28.25	28.25	28.25	28.25	27.22	18.25
ALE	48.93	27.75	17.15	11.85	9.21	7.88

Hardware implementation of Hummingbird2:

Profile	Frequency	Clocks	Peak	Leakage	Area	Gate
		per				equiv.

Volume: 3 Issue: 3 18-Sep-2014, ISSN_NO: 2321-3337

		word				
HB2-	100kHz	8	1.93	4.17	27381	3220
ee4c	10MHz	8	163.1	4.17	27381	3220
HB2-						
ee4c						
HB2-	100kHz	32	1.845	2.85	20871	2332
ee16c	10MHz	32	156.8	2.85	20871	2332
HB2-						
ee16c						

ALE: AES based light weight	Hummingbird light weight		
authenticated encryption	authenticated encryption		
ALE is an online single pass	Hummingbird encryption scheme is		
authenticated encryption algorithm	used in RFID tags		
ALE supports operational associated	Hummingbird I combination of block		
data	cipher and steam cipher		
It has 256-bit secret internal state	It is an combination of 16 bit block		
dependent on both key and nonce	size, 256 bit key size, 80 bit internal		
	state		
It includes operational steps: Padding,	This protocol separates the phases of		
Initialization, Processing message,	private identification and mutual		
finalization	identification		
For long message ALE needs only	It encrypts 16 bits at a time within 20		
about 4AES rounds to both encrypt and	clock cycles		
authenticate a block of message			
AES encryption engine is needed for	It used ISO18000-6c protocol		
both encrypt and decrypt by ALE			
ALE resistant in distinguishing attacks,	It resistant many attacks: Linear		
slide attacks	attacks, Structure attack, etc,.		

CONCLUSION

The simulation process is taken between Hummingbird and ALE encryption algorithm in data encryption field to find the better performance. Since ALE is not known any weak points as longer. ALE is showing the good process and memory allocation than Hummingbird. Same as Hummingbird used in low cost RFID also. We going on the process with other category comparison between these two further we conclude the best one.

International Journal of Advanced Research in

Computer Science Engineering and Information Technology

Volume: 3 Issue: 3 18-Sep-2014, ISSN_NO: 2321-3337

REFERENCES

[1] Daniel Engels, Markku-Juhani O. Saarinen, Peter Schweitzer, and Eric M. Smith "The Hummingbird-2 Lightweight Authenticated Encryption Algorithm"

[2] E. BIHAM AND A. SHAMIR. "Differential Cryptanalysis of the Data Encryption Standard." Springer (1993)

[3] Andrey Bogdanov1, Florian Mendel2, Francesco Regazzoni3,4, Vincent Rijmen5, and Elmar Tischhauser "ALE: AES-Based Lightweight Authenticated Encryption"

[4] Daniel Engels2, Xinxin Fan1, Guang Gong1,

Honggang Hu1, and Eric M. Smith2 Ultra-Lightweight Cryptography for Low-Cost RFID Tags: Hummingbird Algorithm and Protocol

[5] K. Akdemir, M. Dixon, W. Feghali, P. Fay, V. Gopal, J. Guilford, G.W. Erdinc Ozturk, and R. Zohar. Breakthrough AES Performance with Intel AES New Instructions. Intel white paper, January 2010.