
International Journal of Advanced Research in

 Computer Science Engineering and Information Technology

Volume: 3 Issue: 3 18-Sep-2014,ISSN_NO: 2321-3337

A STUDY ON SCALABLE HIGH-

PERFORMANCE VIRUS DETECTION

PROCESSOR FOR ROOTED

NETWORK SECURITY

1 K.RAVIKUMAR, 2K.KAVINILA,

1Associate Professor, Dept.of.Computer science, Tamil University Thanjavur, India.

2Reserts arch Scholar, Dept.of.Computer science, Tamil University Thanjavur.

ABSTRACT−Network security applications generally require the ability to

perform powerful pattern matching to protect against attacks such as viruses

and spam. Traditional hardware solutions are intended for firewall routers.

However, the solutions in the literature for firewalls are not scalable, and they

do not address the difficulty of an antivirus with an ever-larger pattern set.

Related works have focused on algorithms and have even developed specialized

circuits to increase the scanning speed. However, these works have not

considered the interactions between algorithms and memory hierarchy.

Because the number of attacks is increasing, pattern-matching processors

require external memory to support an unlimited pattern set. This method

makes the memory system the bottleneck. However, when the pattern set is already

intractably large, a perfect solution is unattainable.

Keywords: Routing,hacker.

1, INTRODUCTION

The main goal is to provide high performance in most cases while

still performing reasonably well in the worst case. With an eye toward high

performance, updatability, unlimited pattern sets and low memory

requirements, a two-phase architecture is introduced so that it uses off-chip

memory to support a large pattern set. The goal of this project is to provide a

systematic virus detection hardware solution for network security for embedded

systems. Instead of placing entire matching patterns on a chip, a new

solution is to provide a two-phase dictionary-based antivirus processor that

works by condensing as much of the important filtering information as

possible onto a chip and infrequently accessing off-chip data to make the

ISRJournals and Publications Page 375

International Journal of Advanced Research in

 Computer Science Engineering and Information Technology

Volume: 3 Issue: 3 18-Sep-2014,ISSN_NO: 2321-3337

matching mechanism scalable to large pattern sets. In the first stage, the

filtering engine can filter out more than 93.1% of data as safe, using a merged

shift table. Only 6.9% or less of potentially unsafe data must be precisely

checked in the second stage by the exact- matching engine from off-chip

memory. To reduce the impact of the memory gap, three enhancement algorithms

are proposed to improve performance: 1) a skipping algorithm; 2) a cache

method; and 3) a pre fetching mechanism.

2, EXISTING SYSTEM:

Many previous designs have claimed to provide high performance, but

the memory gap created by using external memory decreases performance

because of the increasing size of virus databases. Furthermore, limited resources

restrict the practicality of these algorithms for embedded network security systems.

Two-phase heuristic algorithms are a solution with a tradeoff between

performance and cost due to an efficient filter table existing in internal

memory; however, their performance is easily threatened by malicious attacks.

2.1. DISADVANTAGES:

1. The solutions in the literature for firewalls are not scalable, and they do not

address the difficulty of an antivirus with an ever-larger pattern set.

2. Networking security has always been an important issue. End users are

vulnerable to virus attacks, spam’s and Trojan horses.

3. They may visit malicious websites or hackers may gain entry to their

computers and use them as zombie computers to attack others.

4. The main goal is to provide high performance in most cases while still

performing reasonably well in the worst case.

3, PROPOSED SYSTEM:

To ensure a secure network environment, firewalls were first introduced

to block unauthorized Internet users from accessing resources in a private

network by simply checking the packet head (MAC address/IP address/port

number). This method significantly reduces the probability of being attacked. Virus

Detection Processor is a two-phase pattern matching architecture mostly

comprising the filtering engine and the exact-matching engine. The proposed

ISRJournals and Publications Page 376

International Journal of Advanced Research in

 Computer Science Engineering and Information Technology

Volume: 3 Issue: 3 18-Sep-2014,ISSN_NO: 2321-3337

exact-matching engine also supports data prefetching and caching techniques to

hide the access latency of the off-chip memory by allocating its data structure well.

The other modules include a text buffer and a text pump that pre-fetches text in

streaming method to overlap the matching progress and text reading. A

load/store interface was used to support bandwidth sharing.

3.1. ADVANTAGES:

This work analyzes two scenarios of malicious attacks and provides two methods

for keeping performance within a reasonable range.

In the first stage, the filtering engine can filter out more than 93.1% of data as safe,

using a merged shift table.

Only 6.9% or less of potentially unsafe data must be precisely checked in the

second stage by the exact matching engine from off-chip memory.

To reduce the impact of the memory gap, three enhancement algorithms are

proposed to improve performance: 1) a skipping algorithm; 2) a cache

method; and 3) a pre fetching mechanism.

4, MODULES

 Classification of Vulnerable Hosts

 Permutation-Scanning Worms

 Scanning Hosts at Different Layers

 Analytical Modeling or Simulation

4.1.Classification of Vulnerable Hosts

 Two-phase pattern matching architecture mostly comprising the filtering

engine and the exact-matching engine. The filtering engine is a frontend module

responsible for filtering out secure data efficiently and indicating to candidate

positions that patterns pos sibly exist at the first stage. The exact-matching engine is

responsible for verifying the alarms caused by the filtering engine.

 Exact-matching engine not only stores the entire pattern in external memory

but also provides information to speed up the matching process. Our exact-

matching engine is space-efficient and requires only four times the memory space

of the original size pattern set. The size of a pattern set is the sum of the pattern

ISRJournals and Publications Page 377

International Journal of Advanced Research in

 Computer Science Engineering and Information Technology

Volume: 3 Issue: 3 18-Sep-2014,ISSN_NO: 2321-3337

length for each pattern in the given pattern set; in other words, it is the minimum

size of the memory required to store the pattern set for the exact-matching engine.

Boyer-Moore algorithm uses a pattern pointer to locate a candidate position by

assuming that a desired pattern exists at this position and then shifts its search

window to the right of this pattern.

Wu and Manber (WM) modified the Boyer-Moore algorithm to search for

multiple patterns.

4.2 Permutation-Scanning Worms

Number of attacks is increasing, pattern-matching processors require

external memory to support an unlimited pattern set. This method makes the

memory systemthe bottleneck.

Two-phase pattern matching architecture,

1. Filtering engine

A frontend module responsible for filtering out secure data efficiently and

indicating to candidate positions that patterns possibly exist at the first stage.

2. Exact-matching engine

Responsible for verifying the alarms caused by the filtering engine. Only a

few unsaved data need to be checked precisely by the exact-matching engine in the

second stage.

Also supports data pre fetching and caching techniques to hide the access

latency of the off-chip memory by allocating its data structure well.

ISRJournals and Publications Page 378

International Journal of Advanced Research in

 Computer Science Engineering and Information Technology

Volume: 3 Issue: 3 18-Sep-2014,ISSN_NO: 2321-3337

4.3. Wu-Manber Algorithm

High-performance, Multi-pattern matching algorithm based on the Boyer-Moore

algorithm. It builds three tables in the pre processing stage: a shift table, a hash

table and a prefix table.

The Wu-Manber algorithm is an exact-matching algorithm, but its shift table is an

efficient filtering structure. The shift table is an extension of the bad-character

concept in the Boyer-Moore algorithm, but they are not identical.

4.4. Bloom Filter Algorithm

Composed of different hash functions and a long vector of bits. Initially, all

bits are set to 0 at the pre processing stage. To add an element, the Bloom filter

hashes the element by these hash functions and gets positions of its vector & then

sets the bits at these positions to 1. The value of a vector that only contains an

element is called the signature of an element.

4.5.Sample Entry and Exit Criteria for Regression Testing

Entry Criteria

 The defect is repeatable and has

been properly documented

 A change control or defect

tracking record was opened to

identify and track the regression

testing effort

 A regression test specific to the

defect has been created,

reviewed, and accepted

Exit Criteria

 Results of the test show no

negative impact to the

application

4.6.Analytical Modeling or Simulation

ISRJournals and Publications Page 379

International Journal of Advanced Research in

 Computer Science Engineering and Information Technology

Volume: 3 Issue: 3 18-Sep-2014,ISSN_NO: 2321-3337

Properly simulating the worm propagation on the Internet at the packet level

is very difficult due to its sheer scale. Even for a rather simplified version of the

Internet, without an analytical model, one will need to take the average of multiple

runs of a simulator in order to get acceptably reliable propagation curves. Since

each run could potentially take a long time for realistic values of and , the whole

process could take an enormous amount of time. For an imagined attack targeting at

the Windows ystem, it took 16 h on an Intel Xeon 2.8-GHz processor with 4 GB

RAM to run a single round of a simulation involving around 400Mpotentially

vulnerable windows hosts on IPv4 for one set of worm/network parameters. In

order to run the same simulation for IPv6, it is easy to see that the runtime will be

astronomical. On the contrary, a single run of the numerical simulation based on the

analytical model takes just seconds and gives us the provably correct results.

Moreover, it canhandle extremely large address spaces and vulnerable host

populations. For any worm/network parameter change, new propagation curves can

be recomputed in little time for comparison.

5, CONCLUSIONS

The propagation characteristics of different varieties of permutation-

scanning worms. To verify the correctness of the model, we compare the results

from our model with those obtained from actual worm simulations and show that

they perfectly match. We analyze the model to demonstrate how each

worm/network parameter will affect the worm’s propagation behavior. Finally,

although our analytical model was originally conceived by assuming ideal network

conditions, we show that it can very well be extended to real-life scenarios with the

consideration of variable host bandwidth, network congestion, Internet delay, host

crash, and patching. In our future work, we will continue refining our model by

considering other practical extensions. Many previous designs have claimed to

provide high performance, but the memory gap created by using external memory

decreases performance because of the increasing size of virus databases

REFERENCES

[1] Chieh-Jen Cheng, Chao-Ching Wang, Wei-Chun Ku, Tien-Fu Chen , and Jinn-

Shyan Wang, “Scalable High-Performance Virus Detection Processor Against a

Large Pattern Set for Embedded Network Security” Commun. vol. 51, pp. 62–

70,2011.

ISRJournals and Publications Page 380

International Journal of Advanced Research in

 Computer Science Engineering and Information Technology

Volume: 3 Issue: 3 18-Sep-2014,ISSN_NO: 2321-3337

[2] O. Villa, D. P. Scarpazza, and F. Petrini, “Accelerating real-time string

searching with multicore processors,” Computer, vol. 41, pp. 42–50,2008.

[3] D. P. Scarpazza, O. Villa, and F. Petrini, “High-speed string searching against

large dictionaries on the Cell/B.E. processor,” in Proc. IEEE Int. Symp. Parallel

Distrib. Process., 2008, pp. 1–8.

[4] D. P. Scarpazza, O. Villa, and F. Petrini, “Peak-performance DFA based string

matching on the Cell processor,” in Proc. IEEE Int. Symp. Parallel Distrib.

Process., 2007, pp. 1–8.

[5] L. Tan and T. Sherwood, “A high throughput string matching architecture for

intrusion detection and prevention,”in Proc. 32nd Annu. Int. Symp. Comput. Arch.,

2005, pp. 112–122.

[6] S. Dharmapurikar, P. Krishnamurthy, and T. S. Sproull, “Deep packet

inspection using parallel bloom filters,” IEEE Micro, vol. 24, no. 1, pp.52–61, Jan.

2004.

[7] R.-T. Liu, N.-F. Huang, C.-N. Kao, and C.-H. Chen, “A fast string matching

algorithm for network processor-based intrusion detection system,” ACMTrans.

Embed. Comput. Syst., vol. 3, pp. 614–633, 2004.

[8] F. Yu, R. H. Katz, and T. V. Lakshman, “Gigabit rate packet pattern matching

using TCAM,” in Proc. 12th IEEE Int. Conf. Netw. Protocols, 2004, pp. 174–

178.intrusion detection system,” ACMTrans. Embed. Comput. Syst., vol. 3, pp.

614–633, 2004.

[9] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,”Commun.

ACM, vol. 20, pp. 762–772, 1977.

[10] V. Aho and M. J. Corasick, “Efficient string matching: An aid to bibliographic

search,” Commun. ACM, vol. 18, pp. 333–340, 1975

Powered by TCPDF (www.tcpdf.org)

ISRJournals and Publications Page 381

http://www.tcpdf.org

