
International Journal of Advanced Research in

 Computer Science Engineering and Information Technology

Volume: 2 Issue: 3 08-Apr-2014,ISSN_NO: 2321-3337

A SECURE HIGH PERFORMING CLOUD USING

LOAD REBALANCING TECHNIQUE IN

DISTRIBUTED FILE SYSTEM

 , ,

PG Scholar, Dept of PG CSE, CSI College of Engg, Ketti, .

Principal, CSI College of Engg, Ketti,

Research Scholar, Bharath University, Chennai,

ABSTRACT- Map Reduce programming paradigm plays a vital role in the development of

cloud computing application using the Distributed file system where nodes concurrently

provide computing as well as storage functions. Initially a file is partitioned into number of

chunks allocated into different nodes so that Map Reduce technique can be performed in the

nodes. Since cloud computing is a dynamic environment upgrading, replacing and adding

new nodes to the environment is a frequent concern. This confidence is obviously insufficient

in a large-scale, failure-prone atmosphere since the central load balancer is put under

significant workload that is linearly scaled with the structure of the system range, and may

lead to a performance bottleneck the single point of failure. To overcome the failure in this

paper, a fully distributed load rebalancing algorithm is presented to handle the load

imbalance problem. The proposed algorithm is compared alongside a centralized approach

in a production system and a competing distributed way out is available on hand in the

literature. The simulation results point towards our proposal when compared with the

existing centralized approach significantly outperforms the former distributed algorithm in

terms of load imbalance factor, movement cost, and algorithmic overhead.

Keywords- DHT, Centralized System, Load ImBalancing, Distributed System.

1. INTRODUCTION

The DHT plays a vital role in the existence of Distributed file system, the major

functionality in the Distributed Hash Table is to balance the various nodes equally in the

environment connected to the DHT. All DHTs take some effort in load balancing, generally

this is done by randomizing the DHT address associated with each item with a ―good

enough‖ hash function and make each DHT node responsible for a balanced portion in the

DHT address space. Similar to ―Chord‖ it performs random hashing to nodes in a ring which

means that each node will be responsible for a limited period of time when it is active using

the ring address space whereas in random mapping of items only limited number of packets

land in the ring interval owned by a single node. Existing DHT in Cloud Computing

environment do not evenly partition the address spaces into which the key gets mapped into a

larger portion of few machines. Therefore even if the keys are random and numerous some

machines receive more than a fair share of information. To manage this problem, several

DHTs use virtual nodes where each real machine pretends to be several distinct machines

participating independently in the DHT protocol. The machine‘s load is thus determined by

summing over the load of all virtual nodes, creating a tight attention of load by determining

ISRJournals and Publications Page 176

International Journal of Advanced Research in

 Computer Science Engineering and Information Technology

Volume: 2 Issue: 3 08-Apr-2014,ISSN_NO: 2321-3337

the average load. As a result, the Chord DHT based upon constant hash function will require

numerous virtual environments to be operated for every node in this environment.

Every node will occasionally confirm its inactive virtual nodes, and may transfer to

one of them a part of the distributed load in the system that has been updated. In view of the

fact that only one virtual node is active; the genuine node need not pay the original Chord

protocol‘s multiplicative enhancements made in space and bandwidth costs. Our elucidation

allows a variety of nodes to move to various random addresses with the choice and also

illustrate that we can carry out load balance in an arbitrary distribution of items, without

using much cost in maintaining the load balance. Our proposal works through a kind of

―work stealing‖ in which under loaded nodes migrate to portions of the address space

engaged by too many items. The protocol is simple and practical, with all convolutions in its

concert analysis. In this thesis, we are paying attention in studying the load rebalancing

problem in distributed file systems focused for large-scale, dynamic and data-intensive

clouds. Lastly by permitting nodes to choose random addresses in our item balancing

protocol makes it easier for malicious nodes to interrupt the operation of the P2P network. It

would be attention-grabbing to find counter-measures for this problem.

This paper is organized as follows. Section II: Related work, Section III. System

Model, Section IV: Load balancing algorithm, Section V: Distributed files system, Section

VI: Performance Evaluation and Section VII: Conclusion.

2. RELATED WORK

The challenge in load-balance is that it can fail in two ways. Firstly, the classic

―random‖ partition of the address space amongst nodes is not completely balanced. A few

nodes end up with a superior segment of the addresses and thus receive a larger portion of the

randomly distributed data items. Secondly, a few applications may prevent the randomization

of data items‘ addresses. For example, to maintain a range of searching in a database

application the items may need to be placed in a specific order, or even at specific addresses,

on the ring. In such cases, we may find the items unevenly distributed in address space,

meaning that balancing the address space in the midst of nodes is not adequate to balancing

the distribution of items among nodes. We give protocols to resolve both of the load

balancing challenges just described.

2.1 Performance in a P2P System:

Our online load balancing algorithms are provoked by a new application domain for a

variety of partitioning in peer-to-peer systems. P2P systems accumulate a relation over an

outsized and vibrant set of nodes, and also maintain few queries in excess of this relation. A

lot of modern systems, a technique known as Distributed Hash Tables (DHTs) are used in

which hash partitioning ensure storage balance, and support point queries over the relation.

There has been a significant recent attention in developing P2P systems that can support

proficient range queries. In a P2P web cache, a node may request (pre-fetch) all pages with a

specific URL prefix. It is well-known that hash partitioning is inefficient for answering such

ad hoc range queries, motivating a search for new networks that allow range partitioning

while still maintaining the storage space balance offered by normal DHTs.

2.2 Handling Dynamism in the Network:

 The network splits the series of to take over half the load of , using the

NBRADJUST operation. After this split, there may be NBRBALANCE violations stuck

between two pairs of neighbors and in response, ADJUSTLOAD is executed, first at node

ISRJournals and Publications Page 177

International Journal of Advanced Research in

 Computer Science Engineering and Information Technology

Volume: 2 Issue: 3 08-Apr-2014,ISSN_NO: 2321-3337

and then at node N. It is easy to show (as in Lemma 3) that the resultant progression of

NBRADJUST operations renovate all NBRBALANCE violations.

2.3 Node Departure:

 Although in the network, each node manages data for a particular range. When the

node fails or even when the node leaves the network, the data that is stored in that node

becomes unavailable to the rest of the peers. P2P networks reunite this data loss in two ways:

(a) Do nothing and permit the ―owners‖ of the data deal with its availability. The owners will

repeatedly survey the data to perceive its failure and re-insert the data into the network. (b)

Preserve replicas of each node contends across multiple nodes. A Skip Net DHT organizes

peers and data objects according to their lexicographic addresses in the form of a alternative

of a probabilistic skip list. It supports logarithmic time range-based lookups and guarantees

course vicinity. Mercury is more general than Skip Net since it supports range-based lookups

on multiple-attributes. Our use of random sampling to approximate query selectivity

constitutes a narrative donation towards implementing scalable multi-dimensional range

queries. Load balancing is another important way in which Mercury uses Skip Net. While

Skip Net incorporates a forced load-balancing mechanism, it is only constructive when part

of a data name is hashed, in which case the part is unattainable for performing a range query.

This implies that Skip Net supports load-balancing or range queries not both.

3. SYSTEM MODEL

3.1 Data Popularity

 Unfortunately, in numerous applications, a particular range of standards might

reveal a much superior recognition in terms of database insertions or queries than other

ranges. This would cause the node accountable for the accepted range to become overloaded.

One noticeable explanation is to agree on some way to partition the ranges in proportion to

their reputation. As load pattern change, the system ought to shift nodes around as needed.

We influence our approximate histograms to help execute load-balancing in Mercury. First,

each node can use histograms to determine the normal load existing in the system, and so can

determine if it is comparatively heavily or lightly loaded. Second, the histograms hold

information with reference to which parts of the overlay are lightly loaded.

3.2 Load Balancing

 We have exposed how to balance the address space, but sometimes this is not

sufficient. Some applications, such as those aiming to support range-searching operations,

necessitate specifying a particular, non-random mapping of items into the address space. In

this section, we consider a vibrant protocol that aims to balance load for arbitrary item

distributions. To do so, we must sacrifice the prior protocol‘s constraint of each node to a

small number of virtual node locations—instead, each node is free to migrate anywhere. Our

protocol is randomized, and relies on the fundamental P2P routing framework only able to

contact ―random‖ nodes in the system environment. The protocol is the following, to shape

the performance of the environment, we need the concept of a half-life which is the time

taken for half the items in the system to arrive or depart.

3.3 DHT Implementation

The storage nodes are prearranged as a network based on distributed hash tables (DHTs),

DHTs facilitate nodes to self-organize and repair while frequently offering lookup

functionality in node dynamism, simplifying the system provision and management. The

chunk servers in our suggestion are structured as a DHT network. Typical DHTs pledge that

ISRJournals and Publications Page 178

International Journal of Advanced Research in

 Computer Science Engineering and Information Technology

Volume: 2 Issue: 3 08-Apr-2014,ISSN_NO: 2321-3337

if a node leaves, then its locally hosted chunks are dependably migrated to its successor; if a

node joins, then it allocates the chunks whose IDs instantly precede the joining node from its

successor to manage. Now we portray the application of this idea to DHTs. Let h0 be a

universally agreed hash function that maps peers onto the ring. Similarly, let , … , be a

series of universally agreed hash functions mapping items onto the ring. To insert an item x

using d hash functions, a peer calculates . Then, d lookups are executed in

parallel to and the peers ,… responsible for these hash values, according to the

mapping given by h0.

1. Chunk creation

A file is partitioned into a number of chunks allocated in diverse nodes so that Map Reduce

Tasks can be performed in parallel over the nodes. The load of a node is classically

comparative to the number of file chunks the node possesses. Because the files in a cloud can

be arbitrarily created, deleted, and appended, and nodes can be upgraded, replaced and added

in the file system, the file chunks are not distributed as uniformly as possible among the

nodes. Our objective is to allocate the chunks of files as uniformly as possible among the

nodes such that no node manages a disproportionate number of chunks.

2. Replica Management

In distributed file a constant number of replicas for each file chunk are maintained in distinct

nodes to improve file accessibility with respect to node failures and departures. Our current

load balancing algorithm does not extravagance replicas distinctly. It is unlikely that two or

more replicas are placed in an indistinguishable node because of the random nature of our

load rebalancing algorithm. More particularly, each under loaded node samples a number of

nodes, each selected with a probability of 1/n, to share their loads (where n is the total

number of storage nodes).

4. LOAD BALANCING ALGORITHM

In our projected algorithm, each chunk server would firstly estimate whether the node

is under loaded (light) or overloaded (heavy) without global knowledge. A node is said to be

light if the number of chunks it hosts is smaller than the threshold value. The load status

sample of randomly selected nodes is given below.

Fig.1Load Balancing

ISRJournals and Publications Page 179

International Journal of Advanced Research in

 Computer Science Engineering and Information Technology

Volume: 2 Issue: 3 08-Apr-2014,ISSN_NO: 2321-3337

Distinctively, each one of the node interacts to a number of arbitrarily selected nodes in the

scheme and builds a vector denoted by V. A vector consists of entries, and each entry

contains the ID, network address and load status of a randomly selected node in a large-scale

distributed file system. Fig. 1 shows the total number of messages generated by a load

rebalancing algorithm; A is in a large-scale distributed file system.

4.1 Load-balanced state:

If each one of the chunk server do not host not more than ‗Am‘ chunks. In our

projected algorithm, each chunk server node ‗I‘ firstly estimate whether it is under loaded

(light) or overloaded (heavy) exclusive of global knowledge. ‗ ‘ of ‗A‘ from ‗j‘ is used to

relieve the load of ‗j‘ node ‗j‘ may possibly still remain as the heaviest node in the system

after it has migrated its load to node ‗i‘. In such cases, the current least-loaded node, say node

‗I‘ departs and then rejoins the system as a successor of ‗j‘. That is the new node ‗I‘ becomes

node ‗j+1‘, and j‘s original successor ‗i‘ thus becomes node ‗j + 2‘. Such a process repeats

iteratively until ‗j‘ is no longer the heaviest. Then, the same process is executed to release the

extra load on the next heaviest node in the system. This process repeats until all the heavy

nodes in the system become light nodes.

4.2 Others:

We will offer a rigorous performance analysis for the effect of varying in

Appendix E. Specifically; we discuss the tradeoff between the value of and the movement

cost. A larger introduces more overhead for message exchanges, but results in a smaller

movement cost.

Procedure 1 ADJUSTLOAD (Node Ni) fOn Tuple Insertg

1: Let L() = x 2 (; +1].

2: Let be the lighter loaded of -1 and +1.

3: if L() _ 1 thenfDoNBRADJUSTg

4: Move tuples from to to equalize load.

5: ADJUSTLOAD()

6: ADJUSTLOAD()

7: else

8: Find the least-loaded node Nk.

9: if L() _ +2then fDoREORDERg

10: Transfer all data from to N = _1.

11: Transfer data from Ni to , s.t. L() = =2e and L() = =2c.

12: ADJUSTLOAD (N)

13: fRename nodes appropriately after REORDER.g

14: end if

15: end if

Example1: In the setting above, the maximum load is at most log (log n) = log (d+O) with

high probability. Our proof (not included for reasons of space) uses the layered induction

technique from the seminal work because of the variance in the arc length associated with

each peer; we must modify the proof to take this into account. The standard layered induction

uses the fact that if there is k bins that have load at least k,

Example2:long distance links are constructed using the harmonic distribution on node-link

distance. Value Link denotes the overlay when the harmonic distribution on value distance.

ISRJournals and Publications Page 180

International Journal of Advanced Research in

 Computer Science Engineering and Information Technology

Volume: 2 Issue: 3 08-Apr-2014,ISSN_NO: 2321-3337

Given the capacities of nodes (denoted by {β1, β2, · · · , βn}), we enhance the basic

algorithm in Section III-B2 as follows: each node i approximates the ideal number of file

chunks that it needs to host in a load balanced state as follows:

Ai = γβi,

Note that the performance of the Value Link overlay is representative of the performance of a

plain DHT under the absence of hashing and in the presence of load balancing algorithms

which preserve value contiguity.

As follows:-

map(String key, String value):

// key: document name

// value: document contents

for each word w in value:

EmitIntermediate(w, "1");

reduce(String key, Iterator values):

// key: a word

// values: a list of counts

int result = 0;

for each v in values:

result += ParseInt(v);

Emit(AsString(result));

5. DISTRIBUTED FILE SYSTEM

 We have given more than a few provable proficient surveys on load balancing for

distributed file‘s protocols and distributed data storage in P2P systems. More details and

analysis can be found in a thesis. Our algorithms are simple, and easy to implement in the

distributed files so an obvious next research step should be a practical evaluation of these

schemes. In addition, several concrete open problems follow from our work. Firstly, this

should be possible to further improve the consistent hashing scheme as discussed at the end

of our range search data structure. Distributed hashing does not easily generalize to more than

one order. For example (Fig.2) when storing music files, one might want to index them by

both artist and song title, allowing lookups according to two orderings. Since our protocol

rearranges the items according to the order, doing this for two orders at the same time seems

to be difficult. A simple, but inelegant solution is to rearrange not the items themselves, but

just store pointers to them on the nodes. This requires a more storage capacity and computing

power.

Network Setting Network Setting

Fig.2 The average downloading rate and Convergence time

This makes it possible to maintain two or more orderings at a single time. Finally, by

permitting nodes to decide subjective addresses in our item balancing protocol for distributed

ISRJournals and Publications Page 181

International Journal of Advanced Research in

 Computer Science Engineering and Information Technology

Volume: 2 Issue: 3 08-Apr-2014,ISSN_NO: 2321-3337

files makes it easier for malevolent nodes to interrupt the operation of the P2P network. It

would be interesting to find counter-measures for this problem.

6. PERFORMANCE EVALUATION

We run a varying number of players. The players move through the virtual world

according to a random way point model, with a motion time chosen consistently at random

from seconds, a destination is chosen uniformly at random, and a speed chosen uniformly at

random from (0, 360) pixels per second. The size of the game world is scaled according to

the number of players. The dimensions are 640n -480n, where n is the number of players. All

results are based on the average of 3 experiments, where each experiment lasts up to 60

seconds. The experiments include the bent of log n sized LRU cache long pointers. In the

HDFS load balancer and our proposal, clearly outperforms the HDFS load balancer. When

the name node is heavily loaded (i.e., small M‘s), our proposal remarkably performs better

than the HDFS load balancer.

Fig.3 HDFS

For example, if M = 1%, the HDFS load balancer takes approximately 60 minutes to balance

the loads of data nodes. By contrast, our proposal takes nearly 20 minutes in the case of M=

1%. Specifically, unlike the HDFS load balancer, our proposal is independent of the load in

the name node. In particular, approximating the unlimited scenario is expensive, and the use

of b(log2) nc virtual peers as proposed in introduces a large amount of topology maintenance

trace but does not provide a very close approximation. Finally, we observe that while we are

illustrating the most powerful instantiation of virtual peers, we are comparing it to the

weakest choice model further improvements are available to us just by increasing d to 4.

7. CONCLUSION AND FUTURE ENHANCEMENT

A novel load balancing algorithm to deal with the load rebalancing problem in large-

scale, dynamic, and distributed file systems in clouds has been obtainable in this paper. Our

proposal strives to balance the loads of nodes and reduce the demanded movement cost as

much as possible, while taking advantage of physical network locality and node

heterogeneity. In the absence of representative real workloads (i.e., the distributions of file

chunks in a large-scale storage system) in the public domain, we have investigated the

performance of our proposal and compared it against competing algorithms through

synthesized probabilistic distributions of file chunks. The synthesis workloads stress test the

load balancing algorithms by creating a few storage nodes that are heavily loaded. The

ISRJournals and Publications Page 182

International Journal of Advanced Research in

 Computer Science Engineering and Information Technology

Volume: 2 Issue: 3 08-Apr-2014,ISSN_NO: 2321-3337

computer simulation results are encouraging, indicating that our proposed algorithm performs

very well.

The datum passing through the network is passed as the plain text so the encryption

and decryption techniques can be included in the proposed system to increase the network

security. The speed of the system might reduce due the increase in network traffic due to the

various these cryptographic techniques can be reduces. Steps can be taken to include two or

more cloud environment to the existing system.

REFERENCE

[1] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,F. Dabek, and H.

Balakrishnan, ―Chord: a Scalable Peer-to-Peer LookupProtocol for Internet

Applications,‖IEEE/ACM Trans. Netw., vol. 11,no. 1, pp. 17–21, Feb. 2003.

[2] A. Rowstron and P. Druschel, ―Pastry: Scalable, Distributed ObjectLocation and Routing

for Large-Scale Peer-to-Peer Systems,‖ LNCS 2218, pp. 161–172, Nov. 2001.

[3] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,A. Pilchin, S.

Sivasubramanian, P. Vosshall, and W. Vogels, ―Dynamo:Amazon‘s Highly Available Key-

value Store,‖ in Proc. 21st ACM Symp.Operating Systems Principles (SOSP’07), Oct. 2007,

pp. 205–220.

[4] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica, ―LoadBalancing in

Structured P2P Systems,‖ in Proc. 2nd Int’l Workshop Peerto- Peer Systems (IPTPS’02),

Feb. 2003, pp. 68–79.

[5] D. Karger and M. Ruhl, ―Simple Efficient Load Balancing Algorithms forPeer-to-Peer

Systems,‖ in Proc. 16th ACM Symp. Parallel Algorithms and Architectures (SPAA’04), June

2004, pp. 36–43.

[6] D. DeWitt, R. H. Gerber, G. Graefe, M. L. Heytens, K. B. Kumar,and M. Muralikrishna.

Gamma -a high performance dataflow database. In Proc. VLDB, 1986.

[7] D. DeWitt and J. Gray. Parallel database systems: The future of highperformance

database processing. Communications of the ACM,36(6), 1992.

[8] H. Feelifl, M. Kitsuregawa, and B. C. Ooi. A fast convergencetechnique for online heat-

balancing of btree indexed database overshared-nothing parallel systems. In Proc. DEXA,

2000.

[9] P. Ganesan, M. Bawa, and H. Garcia-Molina.Online balancing ofrange-partitioned data

with applications to p2p systems.Technical Report http://dbpubs.stanford.edu/pubs/2004-18,

Stanford U., 2004.

[10] P. Ganesan, B. Yang, and H. Garcia-Molina. One torus to rule themall: Multi-

dimensional queries in p2p systems. In WebDB, 2004.

[11] S. Ghandeharizadeh and D. J. DeWitt.A performance analysis of alternativemulti-

attribute declustering strategies. In Proc. SIGMOD,

1992.

[12] N. J. A. Harvey, M. Jones, S. Saroiu, M. Theimer, and A. Wolman.Skipnet: A scalable

overlay network with practical locality properties. In Proc. USITS, 2003.

[13] D. R. Karger and M. Ruhl. Simple efficient load-balancing algorithmsfor peer-to-peer

systems.In Proc. IPTPS, 2004.

Powered by TCPDF (www.tcpdf.org)

ISRJournals and Publications Page 183

http://www.tcpdf.org

